
Industry Price Bubbles and Firm's Systemic Risk Contribution: Evidence from Quantile Risk Network Model
Yong MA, Xiaojian SU, Zhengjun ZHANG
China Journal of Econometrics ›› 2025, Vol. 5 ›› Issue (1) : 218-240.
Industry Price Bubbles and Firm's Systemic Risk Contribution: Evidence from Quantile Risk Network Model
In the context of China's emphasis on "maintaining the bottom line of no systemic financial risks", this paper examines the impact of industry bubbles on systemic risks contribution from an industry perspective. Furthermore, we construct inter-industry risk networks to identify the risk sources under different levels of systemic shocks. This provides effective policy references for deepening the reform of the new development pattern in which the domestic grand cycle plays a leading role. The empirical results indicate that, apart from the promoting effect of asset price bubbles in the Agriculture, Water, Environment, and Utilities Management, and Culture, Sports, and Entertainment industries, the impact of most industry bubbles on the systemic risk contributions of firms within those industries is either insignificant or inhibitory. However, when investor sentiment is high, the systemic risk of companies within the industry increases during a bubble period. In the cumulative effects of the local projection model, the promoting effect of bubbles in most industries shows a sustained upward trend, with the cumulative effect of promotion being heterogeneous. In the quantile risk network, industry connections tighten during extreme shocks compared to normal periods. Additionally, the risk defense capabilities of each industry vary depending on the intensity of systemic shock. Besides, the risk sources in industry bubble networks are predominantly in the Agriculture, Manufacturing, Transportation, Catering, and Leasing industries. This implies that risk shocks propagate outward, revolving around production, distribution, circulation, and consumption as the core, indicating that China's economy is transitioning towards a new development pattern centered on the domestic grand cycle.
asset price bubble / firm's systemic risk contribution / local projection / investor sentiment / quantile risk network {{custom_keyword}} /
表1 变量描述 |
变量类别 | 变量名称 | 变量定义 | 变量符号 |
被解释变量 | 公司系统性风险贡献 | ||
核心解释变量 | 行业泡沫 | 行业资产价格处于泡沫期 | |
调节变量 | 公司的投资者情绪 | ||
控制变量 | 股市收益率 | 上证指数对数收益率 | |
股市波动 | 上证指数收益率一个月内的滚动标准差 | ||
股票成交量 | |||
股价振幅 | (公司股票日最高价/日最低价) | ||
市净率 | |||
公司规模 |
表2 行业描述性统计 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | P | R | S | ||
均值 | ||||||||||||||||||
0.11 | 0.02 | 0.27 | 0.02 | 0.03 | 0.01 | 0.10 | 0.03 | 0.02 | 0.03 | 0.02 | 0.18 | 0.02 | 0.02 | 0.08 | 0.03 | 0.04 | ||
标准差 | 0.13 | 0.15 | 0.20 | 0.18 | 0.12 | 0.16 | 0.20 | 0.14 | 0.17 | 0.19 | 0.20 | 0.27 | 0.13 | 0.12 | 0.11 | 0.11 | 0.12 | |
0.31 | 0.13 | 0.44 | 0.12 | 0.16 | 0.09 | 0.30 | 0.17 | 0.15 | 0.17 | 0.15 | 0.38 | 0.15 | 0.14 | 0.28 | 0.16 | 0.20 | ||
样本量 | 14112 | 14112 | 33516 | 756756 | 58212 | 31752 | 72324 | 45864 | 5292 | 56448 | 49392 | 61740 | 12348 | 10584 | 19404 | 5292 | 12348 |
表3 行业泡沫对行业内公司系统性风险贡献的影响 |
面板A: 行业泡沫对行业内公司系统性风险贡献的影响 | |||||||||||||||||
A | B | C | D | E | F | G | H | I | J | K | L | M | N | P | R | S | |
Bubble | 0.05*** | 0.00*** | 0.02*** | 0.00 | 0.08*** | 0.02*** | 0.01 | 0.05*** | 0.03*** | 0.04*** | 0.01*** | 0.04*** | 0.01*** | 0.01* | |||
Amp | |||||||||||||||||
Vol | 0.02*** | 0.03*** | 0.04*** | 0.06*** | 0.01 | 0.03*** | |||||||||||
PBV | 0.03*** | 0.19*** | 0.12*** | 0.01** | 0.12*** | 0.11*** | 0.07*** | ||||||||||
Size | 0.15*** | 0.04*** | 0.12*** | 0.06*** | 0.04*** | 0.11*** | 0.13*** | 0.10*** | |||||||||
0.00 | 0.00 | 0.00 | |||||||||||||||
Adj- | 0.49 | 0.02 | 0.31 | 0.27 | 0.26 | 0.44 | 0.33 | 0.56 | 0.32 | 0.57 | 0.42 | 0.5 | 0.46 | 0.33 | 0.5 | 0.36 | 0.3 |
面板B: 投资者情绪对行业泡沫与行业内公司系统性风险贡献间关系的调节作用 | |||||||||||||||||
Bubble | 0.04*** | 0.00*** | 0.02*** | 0.00 | 0.07*** | 0.03*** | 0.01 | 0.05*** | 0.03*** | 0.05*** | 0.01*** | 0.04*** | 0.01*** | 0.01 | |||
CTO | 0.04*** | 0.03*** | 0.02*** | 0.02*** | 0.03*** | 0.03*** | 0.04*** | 0.03*** | 0.03*** | 0.02*** | 0.03*** | 0.01 | 0.03*** | 0.03*** | 0.02** | 0.02*** | 0.00 |
Amp | |||||||||||||||||
Vol | 0.02*** | 0.03*** | 0.04*** | 0.06*** | 0.01 | 0.03*** | |||||||||||
PBV | 0.03*** | 0.19*** | 0.12*** | 0.01** | 0.12*** | 0.11*** | 0.07*** | ||||||||||
Size | 0.15*** | 0.04*** | 0.12*** | 0.06*** | 0.04*** | 0.11*** | 0.13*** | 0.10*** | |||||||||
Bubble | 0.07*** | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.05 | ||||||||||
Adj- | 0.5 | 0.02 | 0.31 | 0.27 | 0.26 | 0.44 | 0.33 | 0.56 | 0.32 | 0.57 | 0.42 | 0.5 | 0.47 | 0.33 | 0.5 | 0.36 | 0.3 |
注: *、**、*** 分别表示10%、5%和1% 的显著性水平. 下同. |
表4 行业内公司系统性风险贡献对行业泡沫的脉冲响应 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | P | R | S | |
0.0143 | 0.0163 | ||||||||||||||||
0.0024 | 0.0004 | ||||||||||||||||
0.0053 | 0.0057 | ||||||||||||||||
0.0089 | |||||||||||||||||
0.0047 | |||||||||||||||||
0.0029 | |||||||||||||||||
注: 表中代表第h期对下一期的预测结果. |
表5 不同区制下行业内公司系统性风险贡献对行业泡沫的脉冲响应 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | P | R | S | |
面板A: 投资者情绪高涨区制 | |||||||||||||||||
0.0107 | 0.0105 | 0.0000 | 0.0021 | 0.0168 | |||||||||||||
0.0020 | 0.0145 | 0.0023 | 0.0052 | 0.0014 | 0.0051 | 0.0034 | |||||||||||
0.0033 | 0.0302 | ||||||||||||||||
0.0106 | 0.0039 | 0.0068 | |||||||||||||||
0.0013 | 0.0048 | 0.0003 | |||||||||||||||
0.0114 | 0.0100 | ||||||||||||||||
面板B: 投资者情绪低落区制 | |||||||||||||||||
0.0033 | 0.0198 | 0.0107 | 0.0022 | 0.0158 | 0.0042 | 0.0136 | 0.0043 | ||||||||||
0.0006 | 0.0215 | 0.0112 | 0.0136 | ||||||||||||||
0.0164 | |||||||||||||||||
0.0001 | 0.0481 | 0.0045 | |||||||||||||||
0.0119 | 0.0349 | 0.0356 | |||||||||||||||
0.0287 | |||||||||||||||||
0.0240 | 0.0014 | 0.0302 | 0.0280 | ||||||||||||||
0.0005 | 0.0185 | 0.0405 | 0.0146 | ||||||||||||||
0.0047 | |||||||||||||||||
0.0098 | 0.0035 |
表6 行业泡沫风险的描述性统计 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | P | R | S | |
最小值 | |||||||||||||||||
30分位数 | |||||||||||||||||
中位数 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||||
70分位数 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0000 |
最大值 | 0.0013 | 0.0119 | 0.0010 | 0.0101 | 0.0069 | 0.0012 | 0.0007 | 0.0032 | 0.0085 | 0.0070 | 0.0142 | 0.0006 | 0.0061 | 0.0166 | 0.0026 | 0.0141 | 0.0027 |
ADF检验 | |||||||||||||||||
样本量 | 763 | 763 | 763 | 763 | 763 | 763 | 763 | 763 | 763 | 763 | 763 | 763 | 763 | 763 | 763 | 763 | 763 |
表7 泡沫风险网络溢入结果统计 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | P | R | S | |
风险溢入总次数 | 62 | 28 | 85 | 14 | 6 | 25 | 56 | 27 | 23 | 25 | 14 | 67 | 45 | 24 | 32 | 15 | 13 |
风险溢入行业数 | 13 | 3 | 11 | 2 | 2 | 3 | 10 | 8 | 5 | 5 | 2 | 12 | 5 | 3 | 3 | 2 | 4 |
注: “风险溢入总次数”表示在一个行业在不同的分位数冲击强度下, 位列其他16个行业的风险溢出效应前三强的总次数; 与“风险溢入总次数”不同的是, “风险溢入行业数”只统计“风险溢入总次数”中的行业类别个数. |
表8 行业泡沫风险的净溢入效应表 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | P | R | S | |
0.05 | 0.85 | 27.66 | 0.58 | 5.24 | 21.25 | 2.55 | 2.89 | 13.69 | 23.13 | 27.58 | 1.43 | 2.04 | 28.27 | 22.26 | 9.13 | 21.92 | 21.87 |
(16) | (2) | (17) | (11) | (8) | (13) | (12) | (9) | (4) | (3) | (15) | (14) | (1) | (5) | (10) | (6) | (7) | |
0.1 | 3.92 | 19.66 | 0.46 | 1.52 | 7.04 | 0.33 | 2.60 | 11.58 | 11.33 | 12.98 | 0.00 | 3.90 | 24.94 | 13.03 | 13.70 | 7.01 | 14.37 |
(11) | (2) | (15) | (14) | (9) | (16) | (13) | (7) | (8) | (6) | (17) | (12) | (1) | (5) | (4) | (10) | (3) | |
0.2 | 4.40 | 9.78 | 0.23 | 0.50 | 0.70 | 0.69 | 1.58 | 5.54 | 2.96 | 3.78 | 0.74 | 5.40 | 15.64 | 0.30 | 8.55 | 1.07 | 3.21 |
(6) | (2) | (17) | (15) | (13) | (14) | (10) | (4) | (9) | (7) | (12) | (5) | (1) | (16) | (3) | (11) | (8) | |
0.3 | 3.23 | 3.04 | 1.67 | 0.42 | 0.00 | 0.00 | 1.37 | 2.46 | 1.10 | 2.28 | 1.04 | 6.29 | 8.55 | 0.00 | 8.80 | 1.05 | 0.22 |
(4) | (5) | (8) | (13) | (16) | (16) | (9) | (6) | (10) | (7) | (12) | (3) | (2) | (16) | (1) | (11) | (14) | |
0.4 | 2.63 | 1.03 | 1.44 | 0.23 | 0.00 | 0.00 | 1.30 | 1.02 | 0.38 | 1.79 | 1.13 | 4.29 | 4.16 | 0.00 | 8.96 | 1.15 | 0.00 |
(4) | (10) | (6) | (13) | (16) | (16) | (7) | (11) | (12) | (5) | (9) | (2) | (3) | (16) | (1) | (8) | (16) | |
0.5 | 2.27 | 0.38 | 1.15 | 0.52 | 0.00 | 0.00 | 1.11 | 1.34 | 0.21 | 1.44 | 1.14 | 4.98 | 1.38 | 0.00 | 1.87 | 1.17 | 0.00 |
(2) | (12) | (8) | (11) | (16) | (16) | (10) | (6) | (13) | (4) | (9) | (1) | (5) | (16) | (3) | (7) | (16) | |
0.6 | 2.61 | 0.31 | 1.21 | 0.63 | 0.00 | 0.55 | 1.45 | 2.82 | 0.29 | 1.65 | 1.13 | 3.98 | 0.00 | 0.00 | 0.59 | 1.25 | 0.00 |
(3) | (12) | (7) | (9) | (16) | (11) | (5) | (2) | (13) | (4) | (8) | (1) | (16) | (16) | (10) | (6) | (16) | |
0.7 | 3.59 | 1.35 | 0.76 | 0.98 | 0.00 | 1.24 | 1.72 | 6.41 | 0.40 | 2.17 | 1.15 | 4.40 | 0.00 | 0.00 | 1.48 | 1.33 | 0.16 |
(3) | (7) | (12) | (11) | (16) | (9) | (5) | (1) | (13) | (4) | (10) | (2) | (16) | (16) | (6) | (8) | (14) | |
0.8 | 2.98 | 3.01 | 0.50 | 1.48 | 0.00 | 2.81 | 3.46 | 6.47 | 1.11 | 3.93 | 1.57 | 4.83 | 0.36 | 0.00 | 3.79 | 1.24 | 2.43 |
(7) | (6) | (14) | (11) | (17) | (8) | (5) | (1) | (13) | (3) | (10) | (2) | (15) | (17) | (4) | (12) | (9) | |
0.9 | 3.00 | 11.62 | 0.00 | 4.95 | 9.68 | 8.09 | 1.48 | 6.07 | 8.63 | 11.95 | 3.34 | 3.50 | 6.66 | 1.88 | 8.34 | 5.79 | 14.58 |
(14) | (3) | (17) | (11) | (4) | (7) | (16) | (9) | (5) | (2) | (13) | (12) | (8) | (15) | (6) | (10) | (1) | |
0.95 | 0.35 | 19.75 | 0.00 | 13.81 | 19.07 | 18.52 | 0.33 | 6.80 | 18.62 | 25.77 | 10.05 | 1.50 | 13.78 | 15.58 | 8.36 | 13.71 | 14.61 |
(15) | (2) | (17) | (8) | (3) | (5) | (16) | (13) | (4) | (1) | (11) | (14) | (9) | (6) | (12) | (10) | (7) |
注: 行业j的净溢入度INj = ∑i∈Θ, i≠j Nj←i, Θ ∈ {A, B, C, D, E, F, G, H, I, J, K, L, M, N, P, R, S}. 括号里数字为同一外生冲击强度下行业泡沫风险净溢入效应的排名. |
陈少凌, 谭黎明, 杨海生, 崔洁, 我国金融行业的系统重要性研究——基于HD-TVP-VAR模型的复杂网络分析[J]. 系统工程理论与实践, 2021, 41 (8): 1911- 1925.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈文强, 陆嘉玮, 市场情绪、债务融资与房地产企业过度投资[J]. 财经论丛, 2019, (10): 44- 52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
戴亦一, 张鹏东, 潘越, 老赖越多, 贷款越难?——来自地区诚信水平与上市公司银行借款的证据[J]. 金融研究, 2019, (8): 77- 95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
方意, 系统性风险的传染渠道与度量研究——兼论宏观审慎政策实施[J]. 管理世界, 2016, (8): 32- 57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
方意, 荆中博, 外部冲击下系统性金融风险的生成机制[J]. 管理世界, 2022, 38 (5): 19- 35.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
何朝林, 张棋翔, 曹旺栋, 基于异质价格信念的金融资产泡沫形成机制[J]. 中国管理科学, 2022, 30 (12): 162- 172.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
胡滨, 范云朋, 郑联盛, "新冠" 疫情、经济冲击与政府干预[J]. 数量经济技术经济研究, 2020, 37 (9): 42- 61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘丹阳, 黄志刚, 金融科技、OFDI与经济高质量发展——基于"双循环" 相互促进的视角[J]. 中国管理科学, 2023, 31 (11): 151- 164.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘金全, 刘达禹, 张达平, 资产价格错位与货币政策调控: 理论分析与政策模拟[J]. 经济学动态, 2015, (7): 50- 60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李兆东, 曾志坚, 谢赤, 凌毓秀, 多周期视角下全球股市行业间联动性与突发事件冲击影响——一个基于复杂网络的实证研究[J]. 系统工程理论与实践, 2023, 43 (11): 3197- 3213.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李仲飞, 刘银冰, 周骐, 李明昕, 我国房地产业对金融行业的风险溢出效应研究[J]. 计量经济学报, 2021, 1 (3): 577- 594.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李政, 刘淇, 梁琪, 基于经济金融关联网络的中国系统性风险防范研究[J]. 统计研究, 2019, 36 (2): 23- 37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李政, 石晴, 卜林, 基于分位数关联的政策连续性跨国溢出研究[J]. 金融研究, 2022, (8): 94- 112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
马亚明, 胡春阳, 脱实向虚和金融强监管对金融实体行业间极端风险关联的影响[J]. 统计研究, 2021, 38 (4): 74- 88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
宋军, 陆旸, 非货币金融资产和经营收益率的U形关系——来自我国上市非金融公司的金融化证据[J]. 金融研究, 2015, (6): 111- 127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
孙会敏, 张越杰, 中国农产品进出口与农业结构优化的关系研究——基于VAR模型和协整检验的实证分析[J]. 农业技术经济, 2016, (12): 4- 12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
唐斯圆, 宋顺林, 首日涨停板制度与IPO解禁效应——基于投机泡沫视角的分析[J]. 金融研究, 2020, (4): 186- 206.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
谭小芬, 徐慧伦, 董兵兵, 中国非金融企业杠杆率的结构性特征及其演变趋势[J]. 国际经济评论, 2020, (2): 124- 146.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王国刚, 防控系统性金融风险: 新内涵、新机制和新对策[J]. 金融评论, 2017, 9 (3): 1- 20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王红建, 李茫茫, 汤泰劼, 实体企业跨行业套利的驱动因素及其对创新的影响[J]. 中国工业经济, 2016, (11): 73- 89.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王群勇, 李月, 薛彦, 国内国际双循环生产网络的冲击传播: 特征与模拟[J]. 中国工业经济, 2023, (7): 26- 45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王少平, 赵钊, 中国资本市场的突出风险点与监管的反事实仿真[J]. 中国社会科学, 2019, (11): 44- 63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
吴金宴, 王鹏, 哪些因素影响了股市风险传染?——来自行业数据的证据[J]. 中国管理科学, 2022, 30 (8): 57- 68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
谢赤, 贺慧敏, 王纲金, 凌毓秀, 基于复杂网络的泛金融市场极端风险溢出效应及其演变研究[J]. 系统工程理论与实践, 2021, 41 (8): 1926- 1941.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
薛冰, 张兵, 王婉菁, T + 1交易制度、卖空约束和日度换手率效应[J]. 金融评论, 2020, 12 (5): 70- 90.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
亚琨, 罗福凯, 李启佳, 经济政策不确定性、金融资产配置与创新投资[J]. 财贸经济, 2018, 39 (12): 95- 110.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨子晖, 陈雨恬, 谢锐楷, 我国金融机构系统性金融风险度量与跨部门风险溢出效应研究[J]. 金融研究, 2018, (10): 19- 37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨子晖, 王姝黛, 梁方, 产业链结构新视角下的尾部风险跨行业传染[J]. 经济学(季刊), 2023, 23 (1): 212- 227.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
袁放建, 许燕红, 刘德运, 流动资产结构、债务再融资结构与企业价值的关系研究——基于传统行业上市公司的面板数据[J]. 中南大学学报(社会科学版), 2011, 17 (3): 16- 20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
于法稳, 新时代农业绿色发展动因、核心及对策研究[J]. 中国农村经济, 2018, (5): 19- 34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张成思, 唐火青, 陈贞竹, 货币政策冲击对实体企业投资选择影响的"宿醉效应"[J]. 金融研究, 2022, (9): 1- 19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
周基航, 董丰, 贾珅, 绿色经济、资产泡沫与最优政策: 基于带有多部门资产泡沫的动态一般均衡视角[J]. 经济学报, 2023, 10 (1): 47- 84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
周颖刚, 纪洋, 倪骁然, 谢沛霖, 金融学的发展趋势和挑战与中国金融学的机遇[J]. 计量经济学报, 2022, 2 (3): 465- 489.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
周颖刚, 肖潇, 汇率波动, 生产网络与股市风险——基于中美贸易摩擦背景的分析[J]. 金融研究, 2022, (7): 115- 134.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |