
Stock Market Interconnection and Tail Risk Spillover Effects
Wanling ZHONG, Haiqi LI
China Journal of Econometrics ›› 2024, Vol. 4 ›› Issue (2) : 467-486.
Stock Market Interconnection and Tail Risk Spillover Effects
From the perspective of magnitude, direction and dynamics, this paper investigates the tail risk contagion among 10 important stock markets in the world from 1997 to 2022 based on the tail risk interconnectedness network, which is constructed by combining the time-varying peak over threshold (POT) model and the spillover index model. We also focus on the characteristics of tail risk spillover network and the internal mechanism of tail risk contagion. Empirical results show that the average tail risk spillover index of these 10 markets reached 59.79% during the whole sample period, indicating obvious cross-market contagion effect of tail risk. At the same time, the tail risk spillover effect is time varying, which is more significant during the crisis. The United States is the largest net exporter of tail risk in the sample range and one of the important sources of extreme risk in the international market. Due to relatively low degree of openness, the Chinese mainland market has the lowest level of two-way tail risk spillovers and has been a net recipient of tail risk for a long time. Since the outbreak of the China-US trade frictions and the COVID-19, the tail risk linkages among the international stock markets have been strengthened, bringing greater challenges to preventing imported risks and maintaining financial security and stability. The structure of the international tail risk spillover network is also timevarying. The spillover effect mainly exists between developed markets during stable periods, while it is significantly strengthened between emerging markets during crises. Finally, the economic fundamentals and the market contagions are both found to be important factors of tail risk spillover effects.
stock market / tail risk / spillover effect / interconnectedness network / time-varying peak over threshold (POT) model {{custom_keyword}} /
FROM | |||||
TO |
表1 尾部指数的描述性统计分析 |
均值 | 标准差 | 偏度 | 峰度 | JB统计量 | ADF | |
CN | 4.06 | 0.20 | 3.69 | 237.75 | ||
HK | 3.88 | 0.36 | 2.41 | 35.12 | ||
BR | 3.80 | 0.32 | 3.01 | 48.15 | ||
IN | 3.68 | 0.59 | 2.91 | 90.66 | ||
RU | 3.23 | 0.56 | 3.19 | 141.17 | ||
JP | 3.56 | 0.43 | 3.98 | 126.07 | ||
FR | 4.11 | 0.33 | 3.18 | 5.17 | ||
DE | 4.27 | 0.27 | 5.40 | 658.73 | ||
UK | 3.99 | 0.57 | 4.24 | 205.67 | ||
US | 4.02 | 0.45 | 2.68 | 14.61 |
注: 1) JB代表Jaque and Bera (1982)提出的正态性检验统计量; 2) ADF检验是由Dickey and Fuller (1979, 1981)提出的单位根检验方法, 原假设为存在单位根; 3) |
表2 滚动样本平均尾部风险溢出效应矩阵 |
CN | HK | BR | IN | RU | JP | FR | DE | UK | US | FROM | |
CN | 61.22 | 4.78 | 3.10 | 3.21 | 3.72 | 4.61 | 4.01 | 3.95 | 3.95 | 7.45 | 38.78 |
HK | 4.30 | 32.82 | 5.23 | 6.75 | 7.83 | 7.05 | 9.27 | 8.93 | 7.50 | 10.31 | 67.18 |
BR | 1.77 | 4.12 | 46.94 | 4.62 | 5.95 | 5.26 | 8.01 | 7.90 | 7.36 | 8.07 | 53.06 |
IN | 2.23 | 6.27 | 6.78 | 43.40 | 5.15 | 4.58 | 8.96 | 7.94 | 7.68 | 7.00 | 56.60 |
RU | 2.46 | 4.82 | 6.90 | 5.69 | 44.84 | 4.17 | 6.97 | 8.99 | 5.46 | 9.72 | 55.16 |
JP | 2.92 | 7.70 | 8.31 | 3.76 | 4.79 | 34.57 | 8.31 | 9.78 | 6.06 | 13.78 | 65.43 |
FR | 2.48 | 5.28 | 5.10 | 5.51 | 4.66 | 4.26 | 31.13 | 14.44 | 14.22 | 12.92 | 68.87 |
DE | 1.39 | 4.21 | 5.76 | 4.04 | 4.85 | 4.65 | 13.97 | 36.02 | 12.23 | 12.88 | 63.98 |
UK | 1.50 | 5.31 | 5.95 | 4.67 | 5.12 | 3.88 | 13.96 | 12.91 | 36.03 | 10.68 | 63.97 |
US | 1.85 | 5.12 | 6.83 | 3.59 | 4.96 | 6.49 | 12.11 | 13.92 | 10.02 | 35.10 | 64.90 |
TO | 20.91 | 47.61 | 53.96 | 41.85 | 47.03 | 44.94 | 85.57 | 88.77 | 74.47 | 92.81 | 59.79 |
表3 尾部风险净溢出效应排序分析 |
US | DE | FR | UK | BR | RU | IN | CN | HK | JP | |
输出 | 92.81 | 88.77 | 85.57 | 74.47 | 53.96 | 47.03 | 41.85 | 20.91 | 47.61 | 44.94 |
接收 | 64.90 | 63.98 | 68.87 | 63.97 | 53.06 | 55.16 | 56.60 | 38.78 | 67.18 | 65.43 |
总溢出 | 157.71 | 152.75 | 154.44 | 138.45 | 107.01 | 102.19 | 98.45 | 59.68 | 114.78 | 110.36 |
净溢出 | 27.91 | 24.79 | 16.70 | 10.50 | 0.90 | |||||
排序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
图5 尾部风险总溢出指数与经济相关系数时序图注: 时变相关系数为滚动样本下各期、各市场经济变量两两相关系数的平均值; 月度尾部风险溢出指数由周数据简单平均得到; 样本区间为1999年11月至2022年12月. |
图6 全球经济增长率和通货膨胀率时序图注: 经济增长率和通货膨胀率分别由各市场工业增加值同比增长率和CPI同比增长率经年度GDP加权平均求得; 样本区间为1999年11月至2022年12月. |
表4 尾部风险总溢出指数与各指标的相关系数 |
指标 | 经济相关性 | 通货膨胀相关性 | 经济增长率 | 通货膨胀率 | 平均尾部指数 |
Pearson相关系数 | 0.53 | 0.62 | 0.33 | ||
(0.00) | (0.00) | (0.63) | (0.00) | (0.00) | |
Spearman相关系数 | 0.43 | 0.63 | 0.09 | 0.17 | |
(0.00) | (0.00) | (0.13) | (0.00) | (0.00) |
注: *、**、***分别表示10%、5%和1%的显著性水平. |
卜林, 王雪杰, 刘志强, 全球股票市场系统性风险传递网络研究[J]. 国际金融研究, 2020, (3): 87- 96.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
洪永淼, 成思危, 刘艳辉, 汪寿阳, 中国股市与世界其他股市之间的大风险溢出效应[J]. 经济学(季刊), 2004, 3 (3): 703- 726.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李红权, 洪永淼, 汪寿阳, 我国A股市场与美股、港股的互动关系研究: 基于信息溢出视角[J]. 经济研究, 2011, (8): 15- 25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李政, 孙丽玲, 王子美, 基于关联网络的经济政策不确定性全球溢出效应研究[J]. 国际金融研究, 2020, (4): 54- 64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
梁琪, 常姝雅, 全球股票市场系统性风险的预警与防范——基于高低波动风险溢出的网络分析[J]. 国际金融研究, 2022, (9): 67- 76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
梁琪, 李政, 郝项超, 中国股票市场国际化研究: 基于信息溢出的视角[J]. 经济研究, 2015, (4): 150- 164.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘程程, 苏治, 宋鹏, 全球股票市场间风险传染的测度、监管及预警[J]. 金融研究, 2020, (11): 94- 112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
林娟, 赵海龙, 沪深股市和香港股市的风险溢出效应研究——基于时变△CoVaR模型的分析[J]. 系统工程理论与实践, 2020, 40 (6): 1533- 1544.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘晓星, 段斌, 谢福座, 股票市场风险溢出效应研究: 基于EVT-Copula-CoVaR模型的分析[J]. 世界经济, 2011, (11): 145- 159.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
许启发, 王侠英, 蒋翠侠, 熊熊, 基于藤Copula-CAViaR方法的股市风险溢出效应研究[J]. 系统工程理论与实践, 2018, 38 (11): 2738- 2749.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨科, 郭亚飞, 田凤平, 经济政策不确定性冲击下全球系统性金融风险的跨市场传染——基于TVPFAVAR和TVP-VAR模型的研究[J]. 统计研究, 2023, 40 (7): 70- 84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨子晖, 陈雨恬, 黄卓, 国际冲击下系统性风险的影响因素与传染渠道研究[J]. 经济研究, 2023, (1): 90- 106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨子晖, 李东承, 王姝黛, 合成网络新视角下的输入性金融风险研究[J]. 中国工业经济, 2022, (3): 38- 56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨子晖, 王姝黛, 突发公共卫生事件下的全球股市系统性金融风险传染——来自新冠疫情的证据[J]. 经济研究, 2021, (8): 22- 38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨子晖, 张平淼, 陈雨恬, 风险共振还是风险分散——基于尾部事件下风险结构的关联研究[J]. 经济学(季刊), 2021, 21 (6): 2127- 2152.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨子晖, 周颖刚, 全球系统性金融风险溢出与外部冲击[J]. 中国社会科学, 2018, (12): 69- 90.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
苑莹, 王海英, 庄新田, 基于非线性相依的市场间金融传染度量——测度2015年中国股灾对重要经济体的传染效应[J]. 系统工程理论与实践, 2020, 40 (3): 545- 558.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
曾裕峰, 温湖炜, 陈学彬, 股市互联、尾部风险传染与系统重要性市场——基于多元分位数回归模型的分析[J]. 国际金融研究, 2017, (9): 86- 96.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张雪彤, 张卫国, 王超, (2022). 发达市场与新兴市场的尾部风险——溢出、传染与传染动因检验[J/OL]. 中国管理科学. https://doi-org-s.hutb.yitlink.com:8444/10.16381/j.cnki.issn1003-207x.2021.2441.
Zhang X T, Zhang W G, Wang C, (2022). Tail Risks in Developed and Emerging Markets — Test of Spillover, Contagion and Contagion Determinants[J/OL]. Chinese Journal of Management Science. https://doi-org-s.hutb.yitlink.com:8444/10.16381/j.cnki.issn1003-207x.2021.2441.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
郑挺国, 刘堂勇, 股市波动溢出效应及其影响因素分析[J]. 经济学(季刊), 2018, 17 (2): 669- 692.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Harvey A C, (2013). Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series[M]. Cambridge: Cambridge University Press.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |