
Can Combination Forecasts with Dimensionality Reduction Data Improve the Prediction Performance of Stock Excess Returns?
Zheng YANG, Haocheng WU, Jing ZHANG, Yongkai MA
China Journal of Econometrics ›› 2023, Vol. 3 ›› Issue (3) : 828-847.
Can Combination Forecasts with Dimensionality Reduction Data Improve the Prediction Performance of Stock Excess Returns?
We propose a new method combining dimensionality reduction data forecasts and combination forecasts in this study. The purpose is to avoid the uncertainty caused by the method selection of dimensionality reduction data forecasts and the information loss caused by the dimensionality reduction process. This paper forecasts the excess return of S&P 500 index based on a data set consisting of 122 macroeconomic factors and 14 technical index factors. We compare the forecasting results of univariate forecast, univariate combination forecasts, dimensionality reduction data forecasts and dimensionality reduction data combination forecasts. The conclusion of this paper includes three aspects. First, the out-of-sample goodness of fit (ROoS2) shows that the dimensionality reduction data combination forecasts is superior to three dimensionality reduction data methods, and is inferior to the univariate VOL(1, 9) forecasts and univariate combination forecasts. Certainty equivalent return (CER) indicates that the dimensionality reduction data combination forecasts is better than the univariate combination forecast, and is worse than the univariate VOL(1, 9) forecasts and the principal component analysis forecasts. The comprehensive results show that the dimensionality reduction data combination forecasts take into account both forecasting accuracy and economic benefits. Second, the performance of the dimensionality reduction data combination forecasts is robust in different economic cycles and different risk aversion levels. Finally, we propose an econometric test method for the information contained in the combined results. The test results show that the dimensionality reduction data combination forecasts make full use of the forecasting information with the best dimensionality reduction data forecasts, and avoids the information loss caused by a single model.
stock excess return / dimensionality reduction data / out-of-sample goodness of fit / certainty equivalent return / combination forecasts {{custom_keyword}} /
表1 预测期1987–2019年SP500股指超额收益的 |
Panel A: 单变量模型 | |||||
NONBORRES | IPNMAT | UEMP15T26 | CES0600000008 | VOL | |
Panel B: 单变量模型组合 | |||||
等权 | DMSPE权重 | DMSPE权重 | BMA权重 | SAIC权重 | MMA权重 |
Panel C: 多元线性模型和降维数据的回归模型 | |||||
MLR | PCR | RR | LASSO | ||
Panel D: 降维数据的回归模型组合 | |||||
等权 | DMSPE权重 | DMSPE权重 | BMA权重 | SAIC权重 | MMA权重 |
| | | |
注: |
表2 风险厌恶程度 |
Panel A: 降维模型和VOL | |||||
PCR | RR | LASSO | VOL | ||
11.14 | 7.43 | 7.57 | 8.81 | ||
Panel B: 单变量模型组合 | |||||
等权 | DMSPE权重 | DMSPE权重 | BMA权重 | SAIC权重 | MMA权重 |
0.58 | 4.95 | 4.95 | 5.65 | ||
Panel C: 降维数据的回归模型组合 | |||||
等权 | DMSPE权重 | DMSPE权重 | BMA权重 | SAIC权重 | MMA权重 |
8.39 | 8.35 | 8.36 | 7.79 | 7.69 | 8.21 |
表3 三种降维模型预测的信息损失检验 |
权重类型 | PCR | RR | LASSO |
等权 | 0.31 | 3.31 | 2.57 |
DMSPE权重( | 0.32 | 3.23 | 2.48 |
DMSPE权重( | 0.32 | 3.23 | 2.23 |
BMA权重 | 0.47 | 1.88 | 1.83 |
SAIC权重 | 0.47 | 1.91 | 1.70 |
MMA权重 | 0.36 | 1.05 | 0.50 |
注: |
表4 不同经济周期的样本外 |
Panel A: 衰退期 | |||||||
降维数据模型 | 单变量模型组合 | 降维数据模型组合 | |||||
PCR | 等权 | 0.11 | 等权 | ||||
RR | DMSPE权重( | 0.52 | DMSPE权重( | ||||
LASSO | DMSPE权重( | 0.41 | DMSPE权重( | ||||
11.26 | BMA权重 | 6.82 | BMA权重 | ||||
SAIC权重 | 6.82 | SAIC权重 | |||||
MMA权重 | 7.64 | MMA权重 | |||||
Panel B: 扩张期 | |||||||
降维数据模型 | 单变量模型组合 | 降维数据模型组合 | |||||
PCR | 4.98 | 等权 | 0.92 | 等权 | 5.50 | ||
RR | 4.13 | DMSPE权重( | 0.86 | DMSPE权重( | 5.50 | ||
LASSO | 4.56 | DMSPE权重( | 0.87 | DMSPE权重( | 5.54 | ||
4.37 | BMA权重 | 5.20 | BMA权重 | 4.20 | |||
SAIC权重 | 5.20 | SAIC权重 | 4.19 | ||||
MMA权重 | 4.79 | MMA权重 | 4.01 |
注: |
表5 不同风险厌恶系数的确定性等价回报, |
Panel A: | |||||||
降维数据模型 | 单变量模型组合 | 降维数据模型组合 | |||||
PCR | 10.81 | 等权 | 0.70 | 等权 | 8.12 | ||
RR | 7.15 | DMSPE权重( | DMSPE权重( | 8.09 | |||
LASSO | 7.33 | DMSPE权重( | DMSPE权重( | 8.09 | |||
8.29 | BMA权重 | 4.70 | BMA权重 | 7.55 | |||
SAIC权重 | 4.70 | SAIC权重 | 7.46 | ||||
MMA权重 | 5.42 | MMA权重 | 7.98 | ||||
Panel B: | |||||||
降维数据模型 | 单变量模型组合 | 降维数据模型组合 | |||||
PCR | 11.34 | 等权 | 0.57 | 等权 | 8.56 | ||
RR | 7.58 | DMSPE权重( | DMSPE权重( | 8.52 | |||
LASSO | 7.69 | DMSPE权重( | DMSPE权重( | 8.52 | |||
8.96 | BMA权重 | 4.92 | BMA权重 | 7.91 | |||
SAIC权重 | 4.92 | SAIC权重 | 7.80 | ||||
MMA权重 | 5.68 | MMA权重 | 8.33 | ||||
Panel C: | |||||||
降维数据模型 | 单变量模型组合 | 降维数据模型组合 | |||||
PCR | 11.24 | 等权 | 0.51 | 等权 | 8.54 | ||
RR | 7.47 | DMSPE权重( | DMSPE权重( | 8.49 | |||
LASSO | 7.65 | DMSPE权重( | DMSPE权重( | 8.50 | |||
8.30 | BMA权重 | 4.76 | BMA权重 | 7.89 | |||
SAIC权重 | 4.76 | SAIC权重 | 7.77 | ||||
MMA权重 | 5.41 | MMA权重 | 8.31 |
李程, 一类相关性指标优化IOWHA组合模型的预测比较[J]. 统计与决策, 2021, 37 (10): 28- 31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘金培, 罗瑞, 陈华友, 陶志富, 非结构化数据驱动的混合二次分解汇率区间多尺度组合预测[J]. 中国管理科学, 2021,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
马永开, 唐小我, 线性组合预测模型优化问题研究[J]. 系统工程理论与实践, 1998, 18 (9): 111- 115.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
汪同三, 张涛, 组合预测: 理论、方法及应用[M]. 北京: 社会科学文献出版社, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
吴登生, 李建平, 孙晓蕾, 考虑模型相关性的组合预测过程中单项模型筛选研究[J]. 系统科学与数学, 2017, 37 (2): 449- 459.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
袁宏俊, 杜康, 胡凌云, 基于三角模糊数相似度的区间型组合预测模型[J]. 统计与决策, 2019, 35 (6): 24- 29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
曾勇, 唐小我, 曹长修, 非负权重最优组合预测方法研究[J]. 管理工程学报, 1995, 9 (3): 153- 161.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Wright J H, (2003a). Bayesian Model Averaging and Exchange Rate Forecasting[R]. International Finance Discussion Papers: 779.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Wright J H, (2003b). Forecasting US Inflation by Bayesian Model Averaging[R]. International Finance Discussion Papers: 780.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |