
Measuring Income Distribution Indicators such as Inequality and Poverty based on Grouped Data: A Methodological Assessment Considering Data Truncation
WAN Guanghua, JIANG Weirui, HU Xiaoshan
China Journal of Econometrics ›› 2023, Vol. 3 ›› Issue (1) : 1-29.
Measuring Income Distribution Indicators such as Inequality and Poverty based on Grouped Data: A Methodological Assessment Considering Data Truncation
Indicators such as income inequality, poverty and the share of middleincome groups are widely concerned by policy makers, society, academia and even the media, and are also important determinants of many economic and social factors (e.g. growth, consumption, investment, education, health, crime, etc.). However, rarely literature included them in empirical models, mainly due to data deficiency. Furthermore, observations at the top and bottom of household survey data are often missing, causing bias in the empirical estimates. Using data from 2018 China Family Panel Studies (CFPS), this paper evaluates the method proposed by
inequality / poverty / income distribution / grouped data / conditional distribution {{custom_keyword}} /
表1 不同分布概率密度函数和基尼系数 |
分布类型 | 概率密度函数 | 基尼系数 |
Lognormal | ||
Gamma | | |
Weibull | ||
SM | ||
Beta2 | ||
Dagum | ||
GB2 | ||
Pareto |
表2 不同模拟次数下迭代法调整前后偏差情况(单位: %) |
指标 | 分组数 | 模拟次数 | 是否调整 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
个人收入份额 | 五等份分组 | 100 | 调整后 | 11.89 | 20.81 | 17.53 | 4.97 | 6.10 | 8.56 | 6.30 | 19.49 |
调整前 | 12.69 | 26.42 | 32.51 | 5.21 | 6.11 | 8.77 | 6.28 | 37.49 | |||
200 | 调整后 | 11.90 | 20.78 | 17.49 | 5.02 | 6.15 | 8.60 | 6.50 | 19.47 | ||
调整前 | 12.69 | 26.33 | 32.61 | 5.27 | 6.17 | 8.80 | 6.68 | 37.51 | |||
十等份分组 | 100 | 调整后 | 10.49 | 17.39 | 13.77 | 4.76 | 5.64 | 7.66 | 6.06 | 13.85 | |
调整前 | 12.87 | 27.51 | 29.13 | 5.23 | 5.89 | 8.66 | 6.85 | 41.55 | |||
200 | 调整后 | 10.50 | 17.38 | 13.76 | 4.82 | 5.70 | 7.69 | 5.97 | 13.66 | ||
调整前 | 12.87 | 27.41 | 29.14 | 5.30 | 5.95 | 8.69 | 6.49 | 40.84 | |||
基尼系数 | 五等份分组 | 100 | 调整后 | 1.41 | 3.46 | 2.56 | 0.23 | 0.47 | 0.90 | 0.52 | 2.40 |
调整前 | 1.14 | 15.08 | 20.46 | 0.49 | 0.70 | 0.95 | 0.72 | 9.98 | |||
200 | 调整后 | 1.40 | 3.45 | 2.55 | 0.22 | 0.48 | 0.90 | 0.55 | 2.40 | ||
调整前 | 1.13 | 15.04 | 20.67 | 0.49 | 0.70 | 0.95 | 1.11 | 9.99 | |||
十等份分组 | 100 | 调整后 | 0.75 | 1.56 | 1.07 | 0.20 | 0.31 | 0.50 | 0.36 | 0.84 | |
调整前 | 0.86 | 17.89 | 15.47 | 0.43 | 0.53 | 0.54 | 1.52 | 13.34 | |||
200 | 调整后 | 0.75 | 1.56 | 1.07 | 0.20 | 0.31 | 0.51 | 0.34 | 0.82 | ||
调整前 | 0.85 | 17.85 | 15.56 | 0.43 | 0.53 | 0.54 | 1.02 | 13.00 |
表3 不同模拟次数下迭代法调整前后个人收入份额的平均绝对偏差之和(单位: %) |
分组数 | 处理方法 | 截断比例 | Lognormal | Gamma | Dagum | SM | Beta2 | GB2 |
五等份分组 | 考虑截断且进行调整 | 0.50% | 12.49 | 22.29 | 8.02 | 14.65 | 16.19 | 14.93 |
1.00% | 12.69 | 23.28 | 8.37 | 16.74 | 17.88 | 17.56 | ||
1.50% | 13.03 | 24.13 | 8.43 | 17.73 | 18.03 | 18.81 | ||
2.00% | 13.53 | 24.91 | 8.22 | 17.93 | 18.06 | 18.71 | ||
2.50% | 14.12 | 25.66 | 8.52 | 17.92 | 18.11 | 17.76 | ||
3.00% | 14.70 | 26.42 | 8.07 | 17.92 | 18.28 | 18.16 | ||
考虑截断但未进行调整 | 0.50% | 12.82 | 25.34 | 8.11 | 14.69 | 16.33 | 14.99 | |
1.00% | 12.91 | 25.65 | 8.46 | 16.76 | 17.88 | 17.56 | ||
1.50% | 13.18 | 26.03 | 8.54 | 17.74 | 18.03 | 18.80 | ||
2.00% | 13.64 | 26.46 | 8.34 | 17.93 | 18.05 | 18.70 | ||
2.50% | 14.20 | 26.94 | 8.67 | 17.91 | 18.09 | 17.74 | ||
3.00% | 14.75 | 27.45 | 8.23 | 17.90 | 18.25 | 18.12 | ||
未考虑截断 | 0.50% | 15.47 | 22.99 | 11.78 | 13.96 | 15.80 | 16.11 | |
1.00% | 17.76 | 24.44 | 15.35 | 17.40 | 18.91 | 19.77 | ||
1.50% | 19.55 | 25.52 | 17.85 | 19.67 | 20.97 | 21.86 | ||
2.00% | 21.12 | 26.44 | 19.86 | 21.45 | 22.59 | 23.38 | ||
2.50% | 22.60 | 27.33 | 21.63 | 23.04 | 24.04 | 24.71 | ||
3.00% | 23.99 | 28.19 | 23.20 | 24.46 | 25.34 | 25.97 | ||
十等份分组 | 考虑截断且进行调整 | 0.50% | 12.00 | 20.29 | 7.09 | 10.91 | 15.28 | 14.41 |
1.00% | 12.41 | 22.01 | 7.90 | 10.39 | 16.33 | 14.85 | ||
1.50% | 12.95 | 23.38 | 8.79 | 9.74 | 16.11 | 14.59 | ||
2.00% | 13.60 | 24.55 | 9.84 | 9.31 | 15.60 | 14.81 | ||
2.50% | 14.24 | 25.65 | 10.44 | 9.11 | 14.95 | 14.26 | ||
3.00% | 14.60 | 26.72 | 8.87 | 8.36 | 14.23 | 14.35 | ||
考虑截断但未进行调整 | 0.50% | 12.89 | 25.37 | 7.13 | 10.92 | 15.32 | 14.44 | |
1.00% | 13.05 | 25.66 | 7.92 | 10.41 | 16.30 | 14.83 | ||
1.50% | 13.39 | 26.04 | 8.78 | 9.77 | 16.08 | 14.57 | ||
2.00% | 13.92 | 26.48 | 9.82 | 9.33 | 15.57 | 14.79 | ||
2.50% | 14.46 | 26.97 | 10.45 | 9.14 | 14.92 | 14.24 | ||
3.00% | 14.77 | 27.50 | 9.11 | 8.43 | 14.20 | 14.32 | ||
未考虑截断 | 0.50% | 16.01 | 20.59 | 13.85 | 14.86 | 15.92 | 16.31 | |
1.00% | 19.53 | 22.76 | 18.30 | 19.03 | 19.68 | 20.40 | ||
1.50% | 22.05 | 24.37 | 21.25 | 21.76 | 22.20 | 22.70 | ||
2.00% | 23.94 | 25.70 | 23.48 | 23.87 | 24.18 | 24.49 | ||
2.50% | 25.70 | 26.96 | 25.40 | 25.70 | 25.92 | 26.15 | ||
3.00% | 27.22 | 28.15 | 27.02 | 27.26 | 27.43 | 27.56 |
表4 200次模拟下个人收入份额的平均绝对偏差之和(单位: align="left") |
分组数 | 截断比例 | Lognormal | Gamma | Dagum | SM | Beta2 | GB2 |
五等份分组 | 0.5 | 12.51 | 22.25 | 7.99 | 14.55 | 16.15 | 14.90 |
1.0 | 12.71 | 23.23 | 8.56 | 16.53 | 17.70 | 17.39 | |
1.5 | 13.04 | 24.08 | 8.46 | 17.55 | 17.83 | 18.58 | |
2.0 | 13.53 | 24.85 | 8.46 | 17.69 | 17.83 | 18.42 | |
2.5 | 14.10 | 25.59 | 8.58 | 17.63 | 17.90 | 17.47 | |
3.0 | 14.64 | 26.35 | 8.08 | 17.60 | 18.11 | 17.74 | |
十等份分组 | 0.5 | 12.00 | 20.27 | 7.08 | 10.84 | 15.27 | 14.63 |
1.0 | 12.41 | 21.98 | 8.00 | 10.28 | 16.22 | 14.82 | |
1.5 | 12.94 | 23.34 | 8.97 | 9.69 | 15.98 | 14.60 | |
2.0 | 13.59 | 24.50 | 10.02 | 9.31 | 15.48 | 14.76 | |
2.5 | 14.21 | 25.60 | 10.46 | 9.07 | 14.77 | 14.27 | |
3.0 | 14.54 | 26.66 | 8.86 | 8.21 | 14.05 | 14.24 |
表A1 不同截断比例下贫困率的平均绝对百分比偏差(单位: %) |
分组数 | 指标 | 截断比例 | Lognormal | Gamma | Dagum | SM | Beta2 | GB2 |
五等份分组 | Poverty2300 | 0.50% | 28.52 | 81.89 | 39.83 | 21.06 | 10.37 | 14.04 |
1.00% | 35.67 | 71.19 | 33.38 | 22.80 | 5.67 | 9.67 | ||
1.50% | 42.04 | 61.22 | 30.39 | 22.40 | 6.91 | 9.16 | ||
2.00% | 47.72 | 51.78 | 26.28 | 19.87 | 8.01 | 11.43 | ||
2.50% | 52.80 | 42.69 | 20.93 | 16.78 | 9.87 | 13.24 | ||
3.00% | 56.95 | 33.85 | 17.04 | 13.40 | 11.69 | 12.48 | ||
Poverty19 | 0.50% | 22.24 | 63.72 | 29.36 | 14.76 | 7.75 | 11.15 | |
1.00% | 29.26 | 55.43 | 24.33 | 16.14 | 5.46 | 7.57 | ||
1.50% | 35.48 | 47.60 | 21.78 | 16.03 | 6.97 | 8.02 | ||
2.00% | 41.07 | 40.09 | 18.26 | 13.95 | 8.30 | 10.42 | ||
2.50% | 46.10 | 32.82 | 14.50 | 11.35 | 10.15 | 11.63 | ||
3.00% | 50.22 | 25.67 | 11.36 | 8.68 | 11.80 | 11.57 | ||
Poverty32 | 0.50% | 2.99 | 37.39 | 17.15 | 10.47 | 6.22 | 7.16 | |
1.00% | 8.54 | 33.11 | 14.04 | 11.26 | 3.51 | 5.37 | ||
1.50% | 13.55 | 28.91 | 12.23 | 10.98 | 3.31 | 4.75 | ||
2.00% | 18.24 | 24.76 | 9.92 | 9.49 | 3.29 | 5.18 | ||
2.50% | 22.63 | 20.73 | 7.76 | 7.64 | 4.22 | 6.11 | ||
3.00% | 26.31 | 16.79 | 5.81 | 5.89 | 5.34 | 5.94 | ||
十等份分组 | Poverty2300 | 0.50% | 17.60 | 95.63 | 18.30 | 8.11 | 7.99 | 7.78 |
1.00% | 29.76 | 82.29 | 11.60 | 5.60 | 9.69 | 8.73 | ||
1.50% | 39.52 | 70.21 | 7.16 | 5.56 | 13.66 | 11.97 | ||
2.00% | 47.65 | 59.02 | 7.55 | 8.73 | 18.84 | 18.12 | ||
2.50% | 54.15 | 48.32 | 10.98 | 13.42 | 24.42 | 24.34 | ||
3.00% | 57.39 | 37.73 | 12.96 | 17.89 | 30.12 | 30.65 | ||
Poverty19 | 0.50% | 12.89 | 73.76 | 11.49 | 4.82 | 8.32 | 7.10 | |
1.00% | 23.19 | 63.93 | 6.75 | 4.38 | 9.84 | 8.42 | ||
1.50% | 32.65 | 54.39 | 5.58 | 6.43 | 13.68 | 12.06 | ||
2.00% | 40.75 | 45.38 | 8.46 | 10.22 | 18.31 | 17.69 | ||
2.50% | 47.19 | 36.75 | 12.76 | 14.77 | 23.19 | 23.17 | ||
3.00% | 50.43 | 28.21 | 14.86 | 18.82 | 28.21 | 28.63 | ||
Poverty32 | 0.50% | 5.17 | 35.09 | 6.97 | 3.71 | 2.00 | 2.62 | |
1.00% | 9.84 | 31.29 | 4.30 | 2.52 | 2.86 | 2.86 | ||
1.50% | 14.24 | 27.59 | 2.85 | 2.44 | 4.62 | 4.28 | ||
2.00% | 18.31 | 24.05 | 3.78 | 4.06 | 6.97 | 6.85 | ||
2.50% | 22.37 | 21.33 | 6.08 | 6.59 | 9.82 | 9.92 | ||
3.00% | 24.89 | 18.03 | 7.48 | 9.14 | 13.13 | 13.31 |
表A2 不同截断比例下中等收入占比的平均绝对百分比偏差(单位: %) |
分组数 | 指标 | 截断比例 | Lognormal | Gamma | Dagum | SM | Beta2 | GB2 |
五等份分组 | Mid1 | 0.50% | 0.80 | 3.81 | 1.96 | 0.66 | 1.01 | 1.02 |
1.00% | 2.90 | 2.82 | 1.27 | 0.63 | 1.49 | 1.24 | ||
1.50% | 4.42 | 2.56 | 0.97 | 0.58 | 1.45 | 1.22 | ||
2.00% | 5.53 | 2.61 | 0.87 | 0.59 | 1.55 | 1.37 | ||
2.50% | 6.46 | 2.83 | 1.06 | 0.63 | 1.80 | 1.63 | ||
3.00% | 7.14 | 3.15 | 1.39 | 0.63 | 2.03 | 1.78 | ||
Mid2 | 0.50% | 1.27 | 4.80 | 2.92 | 1.54 | 1.23 | 1.45 | |
1.00% | 1.60 | 4.04 | 2.97 | 1.53 | 1.14 | 1.21 | ||
1.50% | 1.97 | 3.22 | 3.04 | 1.42 | 1.19 | 1.23 | ||
2.00% | 2.44 | 2.42 | 3.06 | 1.31 | 1.23 | 1.34 | ||
2.50% | 2.95 | 1.71 | 3.01 | 1.26 | 1.28 | 1.21 | ||
3.00% | 3.41 | 1.24 | 2.93 | 1.20 | 1.34 | 1.22 | ||
十等份分组 | Mid1 | 0.50% | 1.12 | 1.97 | 0.93 | 0.65 | 1.73 | 1.42 |
1.00% | 2.87 | 1.08 | 0.47 | 0.88 | 1.85 | 1.56 | ||
1.50% | 4.19 | 1.11 | 0.88 | 1.35 | 2.11 | 1.94 | ||
2.00% | 5.19 | 1.50 | 1.68 | 1.94 | 2.53 | 2.51 | ||
2.50% | 6.02 | 2.02 | 2.55 | 2.69 | 3.18 | 3.22 | ||
3.00% | 6.69 | 2.61 | 2.96 | 3.35 | 3.88 | 3.93 | ||
Mid2 | 0.50% | 0.81 | 5.92 | 2.43 | 1.38 | 0.73 | 1.03 | |
1.00% | 1.06 | 4.97 | 2.45 | 1.34 | 0.69 | 0.86 | ||
1.50% | 0.91 | 4.02 | 2.54 | 1.36 | 0.72 | 0.72 | ||
2.00% | 0.83 | 3.05 | 2.75 | 1.50 | 0.78 | 0.73 | ||
2.50% | 1.17 | 2.07 | 2.61 | 1.65 | 0.86 | 0.83 | ||
3.00% | 1.57 | 1.20 | 2.19 | 1.48 | 0.94 | 0.95 |
表A3 调整后各分位内收入份额平均绝对偏差(%) (五等份分组数据, 模拟100次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
1 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 |
2 | 0.04 | 0.03 | 0.05 | 0.02 | 0.02 | 0.03 | 0.02 | 0.08 |
3 | 0.05 | 0.04 | 0.07 | 0.03 | 0.03 | 0.04 | 0.03 | 0.13 |
4 | 0.06 | 0.05 | 0.09 | 0.05 | 0.04 | 0.04 | 0.04 | 0.20 |
5 | 0.08 | 0.07 | 0.11 | 0.06 | 0.06 | 0.06 | 0.06 | 0.26 |
6 | 0.10 | 0.10 | 0.14 | 0.07 | 0.07 | 0.08 | 0.07 | 0.36 |
7 | 0.13 | 0.14 | 0.20 | 0.09 | 0.10 | 0.10 | 0.10 | 0.50 |
8 | 0.29 | 0.43 | 0.45 | 0.14 | 0.15 | 0.19 | 0.14 | 1.04 |
9 | 1.44 | 3.90 | 3.22 | 0.32 | 0.47 | 0.90 | 0.51 | 3.20 |
10 | 9.68 | 16.03 | 13.18 | 4.16 | 5.14 | 7.10 | 5.31 | 13.69 |
total | 11.89 | 20.81 | 17.53 | 4.97 | 6.10 | 8.56 | 6.30 | 19.49 |
表A4 调整前各分位内收入份额平均绝对偏差(%) (五等份分组数据, 模拟100次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
1 | 0.04 | 0.07 | 0.67 | 0.03 | 0.02 | 0.02 | 0.02 | 0.14 |
2 | 0.07 | 0.16 | 1.10 | 0.04 | 0.03 | 0.04 | 0.03 | 0.50 |
3 | 0.11 | 0.44 | 1.36 | 0.05 | 0.04 | 0.04 | 0.04 | 0.86 |
4 | 0.13 | 0.79 | 1.57 | 0.07 | 0.05 | 0.05 | 0.05 | 1.19 |
5 | 0.15 | 1.17 | 1.77 | 0.09 | 0.06 | 0.07 | 0.06 | 1.62 |
6 | 0.18 | 1.58 | 1.86 | 0.11 | 0.08 | 0.09 | 0.08 | 2.11 |
7 | 0.22 | 2.02 | 1.96 | 0.14 | 0.10 | 0.13 | 0.10 | 2.84 |
8 | 0.60 | 2.43 | 2.10 | 0.19 | 0.15 | 0.31 | 0.14 | 3.74 |
9 | 1.64 | 2.72 | 3.73 | 0.33 | 0.49 | 1.01 | 0.53 | 4.49 |
10 | 9.57 | 15.04 | 16.42 | 4.16 | 5.09 | 7.01 | 5.25 | 20.01 |
total | 12.69 | 26.42 | 32.51 | 5.21 | 6.11 | 8.77 | 6.28 | 37.49 |
表A5 调整后各分位内收入份额平均绝对偏差(%) (十等份分组数据, 模拟100次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
1 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 |
2 | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.05 |
3 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.07 |
4 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.10 |
5 | 0.06 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.12 |
6 | 0.08 | 0.09 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.17 |
7 | 0.09 | 0.12 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.22 |
8 | 0.12 | 0.16 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 0.31 |
9 | 0.33 | 0.37 | 0.39 | 0.26 | 0.27 | 0.29 | 0.28 | 0.83 |
10 | 9.68 | 16.46 | 12.87 | 4.04 | 4.92 | 6.92 | 5.32 | 11.95 |
total | 10.49 | 17.39 | 13.77 | 4.76 | 5.64 | 7.66 | 6.06 | 13.85 |
表A6 调整前各分位内收入份额平均绝对偏差(%) (十等份分组数据, 模拟100次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
1 | 0.05 | 0.05 | 0.31 | 0.02 | 0.02 | 0.03 | 0.06 | 0.16 |
2 | 0.10 | 0.30 | 0.66 | 0.05 | 0.03 | 0.04 | 0.09 | 0.53 |
3 | 0.12 | 0.65 | 1.06 | 0.06 | 0.04 | 0.05 | 0.11 | 0.92 |
4 | 0.15 | 0.99 | 1.24 | 0.07 | 0.05 | 0.06 | 0.11 | 1.25 |
5 | 0.19 | 1.35 | 1.48 | 0.09 | 0.06 | 0.07 | 0.12 | 1.69 |
6 | 0.22 | 1.71 | 1.59 | 0.12 | 0.08 | 0.10 | 0.14 | 2.25 |
7 | 0.26 | 2.06 | 1.68 | 0.16 | 0.11 | 0.15 | 0.17 | 3.09 |
8 | 0.57 | 2.34 | 1.92 | 0.20 | 0.17 | 0.28 | 0.22 | 4.02 |
9 | 1.64 | 2.62 | 4.15 | 0.35 | 0.42 | 0.97 | 0.47 | 4.84 |
10 | 9.58 | 15.44 | 15.04 | 4.09 | 4.91 | 6.90 | 5.37 | 22.79 |
total | 12.87 | 27.51 | 29.13 | 5.23 | 5.89 | 8.66 | 6.85 | 41.55 |
表A7 调整后各指标平均绝对百分比偏差(%) (五等份分组数据, 模拟100次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
Gini | 1.41 | 3.46 | 2.56 | 0.23 | 0.47 | 0.90 | 0.52 | 2.40 |
Poverty2300 | 19.65 | 2.94 | 20.08 | 2.49 | 3.02 | 8.68 | 3.49 | 100.00 |
Poverty19 | 13.78 | 2.65 | 7.61 | 3.53 | 4.91 | 8.25 | 5.11 | 100.00 |
Poverty32 | 3.18 | 3.19 | 4.80 | 1.99 | 1.44 | 0.89 | 1.38 | 27.77 |
Mid1 | 2.66 | 2.88 | 3.30 | 0.52 | 0.80 | 1.63 | 0.85 | 4.93 |
Mid2 | 1.22 | 1.27 | 1.57 | 1.12 | 1.10 | 1.21 | 1.10 | 2.20 |
表A8 调整前各指标平均绝对百分比偏差(%) (五等份分组数据, 模拟100次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
Gini | 1.14 | 15.08 | 20.46 | 0.49 | 0.70 | 0.95 | 0.72 | 9.98 |
Poverty2300 | 25.98 | 24.19 | 308.54 | 4.37 | 2.82 | 10.68 | 3.43 | 100.00 |
Poverty19 | 20.14 | 13.67 | 243.09 | 2.30 | 4.48 | 10.22 | 5.11 | 100.00 |
Poverty32 | 1.31 | 1.35 | 135.96 | 2.03 | 1.69 | 1.17 | 1.67 | 100.00 |
Mid1 | 3.07 | 38.59 | 17.16 | 1.51 | 0.72 | 1.85 | 0.61 | 47.69 |
Mid2 | 6.76 | 5.76 | 39.26 | 4.33 | 1.86 | 2.83 | 1.37 | 70.09 |
表A9 调整后各指标平均绝对百分比偏差(%) (十等份分组数据, 模拟100次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
Gini | 0.75 | 1.56 | 1.07 | 0.20 | 0.31 | 0.50 | 0.36 | 0.84 |
Poverty2300 | 2.46 | 6.67 | 5.33 | 5.87 | 5.44 | 4.49 | 5.38 | 22.75 |
Poverty19 | 1.86 | 9.08 | 11.47 | 7.55 | 7.04 | 5.22 | 6.92 | 22.86 |
Poverty32 | 0.98 | 0.88 | 0.78 | 0.96 | 1.02 | 1.06 | 1.13 | 5.01 |
Mid1 | 1.75 | 3.65 | 2.57 | 0.46 | 0.55 | 0.91 | 0.68 | 3.06 |
Mid2 | 0.86 | 0.71 | 0.71 | 0.88 | 0.94 | 0.91 | 0.96 | 1.99 |
表A10 调整前各指标平均绝对百分比偏差(%) (十等份分组数据, 模拟100次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
Gini | 0.86 | 17.89 | 15.47 | 0.43 | 0.53 | 0.54 | 1.52 | 13.34 |
Poverty2300 | 21.84 | 3.50 | 335.90 | 2.18 | 3.83 | 9.88 | 5.44 | 120.44 |
Poverty19 | 16.21 | 5.19 | 263.91 | 4.50 | 6.19 | 9.38 | 7.70 | 114.48 |
Poverty32 | 2.78 | 12.58 | 145.05 | 3.85 | 2.58 | 1.16 | 3.86 | 106.07 |
Mid1 | 2.52 | 41.02 | 2.09 | 2.18 | 0.89 | 1.31 | 2.47 | 50.07 |
Mid2 | 7.54 | 1.70 | 41.43 | 4.96 | 2.17 | 2.97 | 3.70 | 66.62 |
表A11 调整后各分位内收入份额平均绝对偏差(%) (五等份分组数据, 模拟200次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
1 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 |
2 | 0.04 | 0.02 | 0.05 | 0.02 | 0.02 | 0.03 | 0.02 | 0.08 |
3 | 0.05 | 0.04 | 0.07 | 0.03 | 0.03 | 0.04 | 0.03 | 0.13 |
4 | 0.06 | 0.05 | 0.09 | 0.05 | 0.04 | 0.04 | 0.04 | 0.20 |
5 | 0.08 | 0.07 | 0.11 | 0.06 | 0.06 | 0.06 | 0.06 | 0.26 |
6 | 0.10 | 0.10 | 0.14 | 0.07 | 0.07 | 0.08 | 0.07 | 0.36 |
7 | 0.13 | 0.14 | 0.20 | 0.09 | 0.10 | 0.10 | 0.10 | 0.50 |
8 | 0.29 | 0.44 | 0.45 | 0.14 | 0.15 | 0.19 | 0.15 | 1.04 |
9 | 1.44 | 3.90 | 3.20 | 0.31 | 0.47 | 0.90 | 0.54 | 3.19 |
10 | 9.69 | 16.00 | 13.15 | 4.22 | 5.20 | 7.14 | 5.47 | 13.66 |
total | 11.90 | 20.78 | 17.49 | 5.02 | 6.15 | 8.60 | 6.50 | 19.47 |
表A12 调整前各分位内收入份额平均绝对偏差(%) (五等份分组数据, 模拟200次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
1 | 0.04 | 0.07 | 0.66 | 0.03 | 0.02 | 0.02 | 0.05 | 0.14 |
2 | 0.07 | 0.16 | 1.08 | 0.04 | 0.03 | 0.04 | 0.05 | 0.50 |
3 | 0.11 | 0.44 | 1.35 | 0.06 | 0.04 | 0.04 | 0.06 | 0.86 |
4 | 0.13 | 0.79 | 1.57 | 0.07 | 0.05 | 0.05 | 0.07 | 1.19 |
5 | 0.15 | 1.17 | 1.78 | 0.09 | 0.06 | 0.07 | 0.08 | 1.61 |
6 | 0.17 | 1.58 | 1.88 | 0.12 | 0.08 | 0.09 | 0.09 | 2.12 |
7 | 0.22 | 2.01 | 1.98 | 0.14 | 0.10 | 0.13 | 0.11 | 2.85 |
8 | 0.59 | 2.41 | 2.11 | 0.19 | 0.15 | 0.30 | 0.15 | 3.74 |
9 | 1.63 | 2.71 | 3.73 | 0.33 | 0.48 | 1.01 | 0.55 | 4.49 |
10 | 9.58 | 14.99 | 16.46 | 4.22 | 5.15 | 7.05 | 5.47 | 20.01 |
total | 12.69 | 26.33 | 32.61 | 5.27 | 6.17 | 8.80 | 6.68 | 37.51 |
表13 调整后各分位内收入份额平均绝对偏差(%) (十等份分组数据, 模拟200次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
1 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 |
2 | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.05 |
3 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.07 |
4 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.10 |
5 | 0.06 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.12 |
6 | 0.08 | 0.09 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.16 |
7 | 0.09 | 0.12 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.22 |
8 | 0.12 | 0.16 | 0.14 | 0.13 | 0.12 | 0.12 | 0.12 | 0.32 |
9 | 0.32 | 0.37 | 0.38 | 0.25 | 0.27 | 0.29 | 0.27 | 0.83 |
10 | 9.70 | 16.45 | 12.87 | 4.11 | 4.97 | 6.96 | 5.24 | 11.77 |
total | 10.50 | 17.38 | 13.76 | 4.82 | 5.70 | 7.69 | 5.97 | 13.66 |
表14 调整前各分位内收入份额平均绝对偏差(%) (十等份分组数据, 模拟200次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
1 | 0.05 | 0.05 | 0.31 | 0.02 | 0.02 | 0.03 | 0.04 | 0.15 |
2 | 0.10 | 0.30 | 0.66 | 0.05 | 0.03 | 0.04 | 0.06 | 0.52 |
3 | 0.12 | 0.64 | 1.06 | 0.06 | 0.04 | 0.05 | 0.07 | 0.90 |
4 | 0.15 | 0.99 | 1.24 | 0.07 | 0.05 | 0.06 | 0.08 | 1.23 |
5 | 0.18 | 1.35 | 1.48 | 0.09 | 0.06 | 0.07 | 0.09 | 1.67 |
6 | 0.22 | 1.71 | 1.59 | 0.12 | 0.08 | 0.10 | 0.10 | 2.23 |
7 | 0.26 | 2.05 | 1.68 | 0.16 | 0.11 | 0.15 | 0.14 | 3.06 |
8 | 0.56 | 2.33 | 1.92 | 0.20 | 0.17 | 0.27 | 0.19 | 3.99 |
9 | 1.63 | 2.60 | 4.14 | 0.35 | 0.42 | 0.97 | 0.45 | 4.78 |
10 | 9.60 | 15.40 | 15.06 | 4.16 | 4.97 | 6.95 | 5.26 | 22.31 |
total | 12.87 | 27.41 | 29.14 | 5.30 | 5.95 | 8.69 | 6.49 | 40.84 |
表A15 调整后各指标平均绝对百分比偏差(%) (五等份分组数据, 模拟200次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
Gini | 1.40 | 3.45 | 2.55 | 0.22 | 0.48 | 0.90 | 0.55 | 2.40 |
Poverty2300 | 19.62 | 2.92 | 20.46 | 2.31 | 2.82 | 8.51 | 3.80 | 100.00 |
Poverty19 | 13.82 | 2.48 | 7.63 | 3.43 | 4.85 | 8.20 | 5.30 | 100.00 |
Poverty32 | 3.18 | 3.22 | 4.89 | 2.01 | 1.46 | 0.91 | 1.44 | 27.80 |
Mid1 | 2.70 | 3.00 | 3.29 | 0.58 | 0.86 | 1.67 | 0.95 | 5.02 |
Mid2 | 1.14 | 1.25 | 1.52 | 1.08 | 1.04 | 1.13 | 1.05 | 2.20 |
表A16 调整前各指标平均绝对百分比偏差(%) (五等份分组数据, 模拟200次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
Gini | 1.13 | 15.04 | 20.67 | 0.49 | 0.70 | 0.95 | 1.11 | 9.99 |
Poverty2300 | 25.97 | 24.65 | 312.27 | 4.52 | 2.63 | 10.47 | 3.77 | 100.00 |
Poverty19 | 20.20 | 13.95 | 246.07 | 2.07 | 4.33 | 10.14 | 5.59 | 100.00 |
Poverty32 | 1.39 | 1.32 | 137.27 | 2.03 | 1.71 | 1.20 | 2.17 | 100.00 |
Mid1 | 2.88 | 38.21 | 16.80 | 1.62 | 0.70 | 1.70 | 0.94 | 47.78 |
Mid2 | 6.62 | 5.65 | 39.64 | 4.45 | 1.90 | 2.72 | 2.64 | 70.30 |
表A17 调整后各指标平均绝对百分比偏差(%) (十等份分组数据, 模拟200次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
Gini | 0.75 | 1.56 | 1.07 | 0.20 | 0.31 | 0.51 | 0.34 | 0.82 |
Poverty2300 | 2.49 | 6.45 | 5.11 | 5.70 | 5.29 | 4.42 | 5.22 | 23.31 |
Poverty19 | 1.80 | 9.07 | 11.39 | 7.50 | 6.99 | 5.18 | 6.88 | 22.98 |
Poverty32 | 1.01 | 0.91 | 0.77 | 0.98 | 1.06 | 1.10 | 1.11 | 5.02 |
Mid1 | 1.78 | 3.89 | 2.60 | 0.53 | 0.63 | 0.99 | 0.70 | 2.68 |
Mid2 | 0.89 | 0.76 | 0.77 | 0.87 | 0.95 | 0.93 | 0.96 | 1.97 |
表A18 调整前各指标平均绝对百分比偏差(%) (十等份分组数据, 模拟200次) |
分布 | Lognormal | Gamma | Weibull | Dagum | SM | Beta2 | GB2 | Pareto |
Gini | 0.85 | 17.85 | 15.56 | 0.43 | 0.53 | 0.54 | 1.02 | 13.00 |
Poverty2300 | 21.80 | 3.60 | 338.48 | 2.01 | 3.62 | 9.71 | 4.66 | 110.22 |
Poverty19 | 16.24 | 4.89 | 265.51 | 4.37 | 6.08 | 9.32 | 7.01 | 107.24 |
Poverty32 | 2.77 | 12.44 | 145.79 | 3.83 | 2.59 | 1.17 | 3.18 | 103.04 |
Mid1 | 2.36 | 40.64 | 1.86 | 2.31 | 0.99 | 1.16 | 1.72 | 49.91 |
Mid2 | 7.41 | 1.64 | 41.39 | 5.09 | 2.25 | 2.86 | 2.79 | 66.97 |
白重恩, 唐燕华, 张琼, 中国隐性收入规模估计——基于扩展消费支出模型及数据的解读[J]. 经济研究, 2015, 50 (6): 4- 18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈春良, 易君健, 收入差距与刑事犯罪: 基于中国省级面板数据的经验研究[J]. 世界经济, 2009, 32 (1): 13- 25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈建东, 罗涛, 赵艾凤, 收入分布函数在收入不平等研究领域的应用[J]. 统计研究, 2013, 30 (9): 79- 86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
胡志军, 刘宗明, 龚志民, 中国总体收入基尼系数的估计: 1985-2008[J]. 经济学(季刊), 2011, 10 (4): 1423- 1436.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李实, 罗楚亮, 中国收入差距究竟有多大?——对修正样本结构偏差的尝试[J]. 经济研究, 2011, 46 (4): 68- 79.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘志国, 马健, 谁的上升空间受到了挤压: 收入流动性角度的分析[J]. 经济学动态, 2016, (8): 53- 60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
龙莹, 中等收入群体比重变动的因素分解——基于收入极化指数的经验证据[J]. 统计研究, 2015, 32 (2): 37- 43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陆铭, 陈钊, 万广华, 因患寡, 而患不均——中国的收入差距、投资、教育和增长的相互影响[J]. 经济研究, 2005, (12): 4- 14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
罗楚亮, 高收入人群缺失与收入差距低估[J]. 经济学动态, 2019, (1): 15- 27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
祁磊, 艾小青, 分组数据下收入基尼系数的计算误差分析[J]. 统计与决策, 2021, 37 (15): 43- 46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
汪晨, 万广华, 吴万宗, 中国减贫战略转型及其面临的挑战[J]. 中国工业经济, 2020, (1): 5- 23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王小鲁, 灰色收入拉大居民收入差距[J]. 中国改革, 2007, (7): 8- 12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王小鲁, (2010). 灰色收入与国民收入分配[J]. 比较, 第48辑.
Wang X L, (2010). Gray Income and National Income Distribution[J]. Comparative, No. 48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王有捐, (2010). 也谈城镇居民收入的统计与调查方法——与王小鲁博士及其课题组关于调查推算方法的商榷[C]//中国收入分配: 探究与争论: 284-289.
Wang Y J, (2010). Also on the Statistics and Survey Methods of Urban Residents' Income-Discussion with Dr. Wang Xiaolu and His Group on the Survey Projection Methods[C]//Income Distribution in China: Exploration and Debate: 284-289.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张军, 吴桂英, 张吉鹏, 中国省际物质资本存量估算: 1952-2000[J]. 经济研究, 2004, (10): 35- 44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张军, 张席斌, 张丽娜, 中国劳动报酬份额变化的动态一般均衡分析[J]. 经济研究, 2022, 57 (7): 26- 44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张萌旭, 陈建东, 蒲明, 城镇居民收入分布函数的研究[J]. 数量经济技术经济研究, 2013, 30 (4): 57- 71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
郑世林, 杨梦俊, 中国省际无形资本存量估算: 2000-2016年[J]. 管理世界, 2020, 36 (9): 67- 81.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Sabelhaus J, Johnson D S, Ash S, Swanson D, Garner T I, et al. (2012). Is the Consumer Expenditure Survey Representative by Income?[R]. FEDS Working Papers, No. 2012/36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Shorrocks A, Wan G, (2009). Ungrouping Income Distributions: Synthesising Samples for Inequality and Poverty Analysis[M]//Basu K, Kanbur R. Arguments for a Better World: Essays in Honor of Amartya Sen. Oxford: Oxford University Press: 414-434.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |