
期权隐含信息在投资组合优化中的应用研究
Research on Application of Option Implied Information in Portfolio Optimization
本文利用无模型方法计算上证50ETF期权的隐含波动率, 以上证50指数的成分股为资产池构建投资组合, 对最小方差组合、等权重组合、市值加权组合以及市场组合的投资效果进行比较.研究结果表明, 在市场波动剧烈时期, 使用期权隐含信息构建的最小方差组合要优于基于历史数据构建的四种基准组合.因此, 投资者应该有效地利用期权中隐含的前瞻性信息来优化投资组合管理.
This article uses the model-free method for the first time to calculate the implied volatility of SSE 50ETF options. The constituent stocks of the SSE 50 Index construct an investment portfolio for the asset pool. In addition, the investment effects of minimum variance portfolio constructed with implied information, minimum variance portfolio based on historical information, equal weight portfolio, market value weighted portfolio, and market portfolio are compared. The research results show that during the period of severe market volatility, when the market panic is severe, the performance of the minimum variance portfolio optimized by the implied volatility of options is better than the four benchmark portfolios based on historical data. Therefore, investors should effectively use the forward-looking information implied in options to optimize the performance of investment portfolios.
无模型 / 隐含波动率 / 最小方差投资组合 {{custom_keyword}} /
model free / implied volatility / minimum variance portfolio {{custom_keyword}} /
表1 全时间段投资组合的年化平均收益率和标准差 |
imv_MVP | 0.1522 | 0.0419 |
hist_MVP | 0.0489 | |
(0.0524) | (0.1173) | |
pass_1/ | 0 | –0.0417 |
(0.0000) | (0.0005) | |
pass_CW | 0.0050 | |
pass_50 | 0.0158 | |
(0.0000) | (0.0051) |
注: 括号中为 |
表2 市场波动剧烈时期的年化平均收益率和标准差 |
imv_MVP | 0.3883 | –1.1863 |
hist_MVP | 0.3956 | –1.2073 |
(0.0402) | (0.5129) | |
pass_1/ | 0.4784 | –1.5339 |
(0.0000) | (0.2034) | |
pass_CW | 0.4041 | –1.4358 |
(0.1569) | (0.1139) | |
pass_50 | 0.4370 | –1.5891 |
(0.0005) | (0.0183) |
注: 括号中为 |
表3 市场平稳时期的年化平均收益率和标准差 |
imv_MVP | 0.0906 | 0.1497 |
hist_MVP | 0.0908 | 0.1441 |
(0.6483) | (0.1032) | |
pass_1/ | 0.1069 | 0.0972 |
(0.0000) | (0.0057) | |
pass_CW | 0.1034 | 0.2569 |
(0.0000) | (0.0000) | |
pass_50 | 0.1060 | 0.2569 |
(0.0000) | (0.0000) |
注: 括号中为 |
陈蓉, 方昆明, 波动率风险溢酬: 时变特征及影响因素[J]. 系统工程理论与实践, 2011, 31 (4): 761- 770.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李蒲江, 郭彦峰, 证券市场的期现基差与流动性[J]. 管理科学, 2017, 30 (4): 151- 160.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
沙楠, 不确定性指标、方差风险溢价及其对股权溢价的预测效果分析——基于中美股票市场的分析[J]. 金融学季刊, 2017, 11 (4): 40- 59.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
郑振龙, 郑国忠, 隐含高阶协矩: 提取, 分析及交易策略[J]. 统计研究, 2017, 34 (4): 101- 111.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |