
短期投机、价值回归和轮动
Short-Term Speculation, Value Return and Rotation: Analysis of the Dynamic Mechanism of the IV Effect
本文从传导机制角度对A股市场特质波动和收益率之间的关系进行了研究,结果发现A股市场存在典型的“特质波动之谜”,但是与发达国家不同,我国股市“特质波动之谜”的主要成因并非价值回归而是短期投机和价值回归的轮动;由散户交易推动的短期投机对未来收益具有显著的正向影响,只有当特质波动出现变小趋势时,短期投机的影响才会减弱使价值回归的影响表现出来,特质波动的跨期变化趋势是判断轮动状态转换的重要信号.
This paper investigates the relationship between idiosyncratic volatility and stock returns in A-share market from a perspective of transmission mechanism. A typical idiosyncratic volatility puzzle is discovered in A-share market but unlike in developed countries, its main cause isn't value return but the rotation of short-term speculation and value return. Speculation driven by retail trading exerts a significantly positive influence on stock returns in the future. This influence weakens to show the effect of value return only when idiosyncratic volatility begins to decrease, which is an important signal of switching point in rotation.
特质波动之谜 / 短期投机 / 价值回归 {{custom_keyword}} /
the idiosyncratic volatility puzzle / speculation / value return {{custom_keyword}} /
表1 特质性波动与收益率之间的横截面关系 |
解释变量 | 不同控制变量情形下的各模型全样本回归结果 | 分组回归结果 | |||||
(1) | (2) | (3) | (4) | 波动变大组 | 波动变小组 | ||
-0.2511*** (-13.33) | -0.2211*** (-11.15) | -0.2115*** (-11.32) | -0.1892*** (-11.44) | 0.3853*** (9.50) | 0.1018*** (5.25) | ||
-0.0477*** (-4.15) | -0.1152*** (-7.79) | -0.0943*** (-8.06) | |||||
-0.032** (-2.69) | -0.0855*** (-5.79) | -0.0539*** (-4.80) | |||||
-0.0672*** (-7.16) | -0.0731*** (-7.57) | -0.0792*** (-8.41) | -0.1041*** (-7.94) | -0.0996*** (-13.02) | |||
-2.631*** (-7.56) | -2.9227*** (-8.31) | -3.0396*** (-8.79) | -0.0163*** (-4.37) | -0.0282*** (-6.70) | -0.0095** (-2.92) | ||
-0.1383 (-0.91) | -0.2212 (-1.47) | -0.2493 (-1.70) | -1.947*** (-18.85) | -1.9534*** (-16.83) | -1.2024*** (-14.15) | ||
0.2015 (1.76) | 0.2257* (2.00) | 0.2294* (2.05) | 0.6431*** (5.72) | 0.7489*** (6.07) | 0.5143*** (5.45) | ||
ln(bm) | -1.733*** (-16.04) | -1.7476*** (-16.71) | -1.8816*** (-18.47) | -3.0011*** (-8.81) | -2.3299*** (-7.41) | -3.1931*** (-8.55) | |
ln(mratio) | 0.4434*** (3.81) | 0.5509*** (4.82) | 0.6544*** (5.79) | -0.234 (-1.60) | -0.139 (-1.03) | -0.5685*** (-3.54) | |
momFu | -0.0203*** (-5.50) | 0.2208* (1.98) | 0.2903** (2.82) | 0.2452* (2.17) | |||
6.4753*** (6.77) | 6.7376*** (7.18) | 7.2268*** (7.70) | 7.4816*** (7.87) | 6.1533*** (6.05) | 4.1498*** (5.20) | ||
0.172 | 0.1903 | 0.2013 | 0.2069 | 0.2118 | 0.2593 | ||
R2_adj | 0.1684 | 0.1862 | 0.1966 | 0.2012 | 0.1984 | 0.2476 | |
RMSE | 8.4535 | 8.3636 | 8.3094 | 8.2849 | 9.0462 | 6.5301 |
注: 每个月进行一次横截面回归, 然后统计横截面回归因子载荷在时间序列上的均值并进行显著性t检验. 表中汇报的各参数估计值是每个月横截面回归所得参数估计值在时间序列上的均值, 括号中是对应的t值. R2是横截面回归 |
表2 换手率对"特质波动之谜"的解释力 |
解释变量 | (1) | (2) | (3) | (4) |
-0.1935*** (-11.44) | -0.3637*** (-21.26) | -0.1794*** (-11.53) | -0.3156*** (-21.16) | |
-0.041*** (-3.70) | -0.1215*** (-11.05) | |||
-0.028* (-2.37*) | -0.0777*** (-6.61) | |||
-0.0715*** (-7.42) | -0.0983*** (-10.50) | -0.0773*** (-8.20) | -0.1116*** (-12.33) | |
momFu | -0.0201*** (-5.46) | -0.0235*** (-6.81) | -0.0163*** (-4.41) | -0.0157*** (-4.41) |
ln(bm) | -1.9031*** (-18.84) | -1.7295*** (-16.37) | -1.9639*** (-19.22) | -1.8833*** (-17.48) |
ln(mratio) | 0.6658*** (5.7) | 1.1925*** (11.28) | 0.6671*** (5.74) | 1.169*** (11.13) |
-3.0185*** (-8.71) | -3.8584*** (-11.17) | -3.0033*** (-8.74) | -3.7742*** (-11.08) | |
-0.2447 (-1.69) | -0.5305*** (-3.80) | -0.2362 (-1.63) | -0.5054*** (-3.64) | |
0.2156 (1.93) | 0.2227* (2.11) | 0.2096 (1.89) | 0.2093* (2.01) | |
Turnt-1 | -0.0057* (-2.41) | -0.0048* (-2.06) | ||
Turnt | 0.0796*** (25.74) | 0.082*** (26.68) | ||
7.2235*** (7.47) | 10.7136*** (12.13) | 7.5581*** (7.72) | 11.3944*** (12.71) | |
0.2071 | 0.2736 | 0.2123 | 0.2807 | |
R2_adj | 0.2019 | 0.2689 | 0.206 | 0.2749 |
RMSE | 8.2806 | 7.9374 | 8.2589 | 7.903 |
表3 换手率、特质波动的跨期变化与"特质波动之谜" |
解释变量 | 控制滞后一期换手率 | 控制同期换手率 | |||||
波动变大组 | 波动变小组 | 波动变大组 | 波动变小组 | 波动变大组 | 波动变小组 | ||
0.3915*** (9.70) | 0.1205*** (6.09) | -0.0777 (-1.94) | -0.0487* (-2.50) | 0.018 (0.46) | -0.0047 (-0.24) | ||
-0.1107*** (-7.49) | -0.0844*** (-7.55) | -0.1557*** (-11.05) | -0.1252*** (-11.34) | ||||
-0.0807*** (-5.45) | -0.051*** (-4.59) | -0.1161*** (-7.85) | -0.0676*** (-6.21) | ||||
-0.1026*** (-7.86) | -0.0973*** (-12.86) | -0.1119*** (-8.60) | -0.099*** (-13.01) | -0.1315*** (-10.37) | -0.1118*** (-14.92) | ||
momFu | -0.0282*** (-6.68) | -0.0095** (-2.94) | -0.0345*** (-8.67) | -0.0177*** (-5.65) | -0.0244*** (-6.00) | -0.0098** (-3.08) | |
ln(bm) | -1.9961*** (-17.63) | -1.1919*** (-14.16) | -1.8148*** (-15.63) | -1.052*** (-12.31) | -1.9969*** (-16.82) | -1.2042*** (-13.92) | |
ln(mratio) | 0.827*** (6.54) | 0.4867*** (4.98) | 1.4655*** (12.62) | 0.6934*** (7.54) | 1.416***) (12.23 | 0.6812*** (7.45) | |
-2.3659*** (-7.51) | -3.1433*** (-8.36) | -3.133*** (-9.73) | -3.7727*** (-10.09) | -3.0355*** (-9.59) | -3.6737*** (-9.96) | ||
-0.1504 (-1.12) | -0.5616*** (-3.53) | -0.4173** (-3.21) | -0.7137*** (-4.54) | -0.3894** (-3.02) | -0.6813*** (-4.36) | ||
0.2776** (2.72) | 0.2369* (2.11) | 0.2735** (2.83) | 0.2336* (2.10) | 0.2585** (2.72) | 0.2146 (1.95) | ||
Turnt-1 | -0.0047 (-1.16) | -0.0046* (-2.26) | |||||
Turnt | 0.0826*** (24.87) | 0.0464*** (12.81) | 0.0844*** (25.57) | 0.0492*** (13.57) | |||
6.5306*** (6.34) | 3.791*** (4.53) | 10.7748*** (11.50) | 5.189*** (6.62) | 11.4971*** (12.13) | 5.8737*** (7.49) | ||
0.2198 | 0.2663 | 0.2752 | 0.2745 | 0.2845 | 0.2854 | ||
R2_adj | 0.2052 | 0.2535 | 0.2642 | 0.2642 | 0.2711 | 0.2729 | |
RMSE | 9.0062 | 6.5041 | 8.6763 | 6.464 | 8.6322 | 6.4264 |
表4 特质波动、换手率和收益率时序相关系数矩阵 |
L.IdioV | D.IdioV | IdioV | Turn | ||
L.IdioV | 1 | ||||
D.IdioV | -0.5666 | 1 | |||
0.404 | 0.5093 | 1 | |||
Turn | 0.3322 | 0.1824 | 0.5251 | 1 | |
-0.0819 | 0.237 | 0.184 | 0.1998 | 1 |
注: 先计算每只个股对应的各变量在时间序列上的相关系数, 然后取横截面上的均值. |
表5 换手率统计——散户交易的证据 |
细项 | A.按上月涨跌情况 | B.按上月日收益率偏度情况 | ||||
分组 | 全部 | 上月涨幅前5% | 上月跌幅前5% | 偏度为正 | 偏度为负 | |
换手率 | 52.87 | 88.54 | 58.87 | 55.28 | 46.64 | |
C.按上月特质波动分组 | ||||||
分组 | 1 | 2 | 3 | 4 | 5 | |
换手率 | 38.03 | 44.41 | 48.4 | 54.82 | 78.77 | |
D.按股票规模 | ||||||
市值 | 50亿元以下 | 50亿~100亿 | 100亿~300亿 | 300亿~500亿 | 500亿以上 | |
换手率 | 55.01 | 51.67 | 42.43 | 33.28 | 22.19 |
注: 表中统计的换手率是月度换手率, 使用2000年1月至2016年6月个股层面的混合面板数据进行统计. 特质波动分组1~5是按照由低到高的顺序排列的, 第1组的特质波动最低, 第5组的特质波动最高. |
表6 特质波动及其变化趋势对个股横截面统计特征的影响 |
分组 | 股票数 | corr(LIdioV, R) | corr(LIdioV, DIdioV) | LIdioV | 换手率 | ||
上涨股 | |||||||
低变高 | 342 | 0.1558 | -0.0911 | 6.23 | 9.5 | 97 | 52 |
低变低 | 168 | 0.1841 | -0.3257 | 7.26 | 5.2 | 83 | 32 |
高变高 | 88 | 0.1671 | -0.0556 | 11.26 | 13.06 | 160 | 83 |
高变低 | 189 | 0.1553 | -0.5292 | 12.66 | 7.79 | 124 | 53 |
下跌股 | |||||||
低变高 | 242 | -0.1304 | -0.0612 | 6.2 | -7.59 | 90 | 38 |
低变低 | 195 | -0.1707 | -0.3915 | 7.21 | -7.04 | 77 | 28 |
高变高 | 64 | -0.1086 | -0.0001 | 11.24 | -10.41 | 114 | 67 |
高变低 | 224 | -0.1681 | -0.6093 | 12.72 | -8.96 | 103 | 48 |
注: LIdio表示个股滞后一月特质波动, DIdio表示个股特质波动的一阶差分, R表示月超额收益率, P/E表示市盈率, corr(LIdioV, R)表示滞后一月特质波动和收益率的横截面相关系数.滞后一月特质波动、特质波动跨期变化值、月超额收益率和市盈率均值的统计方法为: 每月取各组内的横截面均值, 然后再对每组相应统计量取时间序列均值. |
表7 特质波动的跨期变化对横截面收益的影响 |
解释变量 | (1) | (2) | (3) | 分组回归 | |
波动变大组 | 波动变小组 | ||||
0.3987*** (7.92) | 0.6433*** (14.57) | 0.5465*** (12.67) | 0.3368*** (5.90) | 0.4356*** (10.09) | |
-0.1796*** (-15.81) | -0.1651*** (-14.26) | -0.1818*** (-12.94) | -0.1594*** (-14.17) | ||
-0.1176*** (-9.99) | -0.1134*** (-9.67) | -0.132*** (-8.73) | -0.0916*** (-8.81) | ||
DIdioV | 0.7634*** (14.31) | 0.9691*** (19.89) | 0.9367*** (19.46) | 0.7248*** (11.73) | 0.6807*** (14.77) |
-0.1376*** (-15.93) | -0.1264*** (-14.09) | -0.1077*** (-11.77) | -0.1414*** (-11.72) | -0.1282*** (-16.76) | |
momFu | -0.0203*** (-7.07) | -0.0208*** (-6.11) | -0.0319*** (-9.26) | -0.0266*** (-6.71) | -0.0129*** (-4.13) |
ln(bm) | -1.2706*** (-14.31) | -1.2081*** (-13.73) | -1.0109*** (-11.66) | -1.6291*** (-14.92) | -0.9169*** (-11.31) |
ln(mratio) | 0.8961*** (8.88) | 0.6823*** (6.59) | 0.7345*** (7.08) | 1.2339*** (10.91) | 0.5572*** (6.05) |
-2.8431*** (-8.68) | -2.3815*** (-7.49) | -2.5346*** (-7.82) | -2.2758*** (-7.39) | -3.4048*** (-9.26) | |
-0.501*** (-3.77) | -0.3901** (-2.84) | -0.4312** (-3.11) | -0.3537** (-2.75) | -0.7119*** (-4.63) | |
0.289** (3.12) | 0.3382*** (3.52) | 0.3574*** (3.65) | 0.2855** (3.15) | 0.2838** (2.69) | |
Turnt | 0.0536*** (15.78) | 0.0661*** (17.07) | 0.036*** (9.46) | ||
5.2943*** (6.46) | 2.8927*** (3.47) | 2.2232** (2.66) | 6.7357*** (7.53) | 3.7256*** (4.63) | |
0.371 | 0.3504 | 0.3412 | 36.5165 | 31.9943 | |
R2_adj | 0.3654 | 0.3451 | 0.3368 | 0.3555 | 0.326 |
RMSE | 7.35 | 7.4572 | 7.5085 | 0.342 | 0.313 |
包锋, 徐建国, 异质信念的变动与股票收益[J]. 经济学(季刊), 2015, (4): 1591- 1610.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈国进, 胡超凡, 王景, 异质信念与股票收益[J]. 财贸经济, 2009, (3): 1- 13.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈国进, 张贻军, 王景, 再售期权、通胀幻觉与中国股市泡沫的影响因素分析[J]. 经济研究, 2009, (5): 106- 117.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈峥嵘, 李佳明, 机构投资者的羊群行为与中小市值企业的成长性-基于中小板和创业板市场的实证检验[J]. 金融评论, 2012, (2): 73- 84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李竹薇, 史永东, 于淼, 安辉, 中国股票市场特质波动率异象及成因[J]. 系统工程, 2014, (6): 1- 7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
廖理, 梁昱, 张伟强, 谁在中国股票市场中博彩?[J]. 清华大学学报(自然科学版), 2016, (6): 677- 684.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
史永东, 李凤羽, 卖空限制、意见分歧收敛与信息披露的股价效应[J]. 金融研究, 2012, (8): 111- 124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨华蔚, 韩立岩, 中国股票市场特质波动率与横截面收益研究[J]. 北京航空航天大学学报(社会科学版), 2009, (1): 6- 10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张峥, 刘力, 换手率与股票收益: 流动性溢价还是投机性泡沫?[J]. 经济学(季刊), 2006, (4): 871- 892.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
郑振龙, 孙清泉, 彩票类股票交易行为分析: 来自中国A股市场的证据[J]. 经济研究, 2013, (5): 128- 140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
左浩苗, 郑鸣, 张翼, 股票特质波动率与横截面收益: 对中国股市"特质波动率之谜"的解释[J]. 世界经济, 2011, (5): 117- 135.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Bali T G, Bodnaruk A, Scherbina A D, Tang Y, (2016). Unusual News Flow and the Cross-section of Stock Returns[R]. Georgetown McDonough School of Business Research Paper, 2820320.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Boyer B, Mitton T, Vorkink K, (2007). Idiosyncratic Volatility and Skewness: Time-series Relations and the Cross-section of Expected Stock Returns[R]. Working Paper, Brigham Young University, 84602.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Cao X, Xu Y, (2010). Long-run Idiosyncratic Volatilities and Cross-sectional Stock Returns[R]. Working Paper, University of Texas at Dallas.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Chen L H, Jiang G, Xu D, Yao T, (2012). Dissecting the Idiosyncratic Volatility Anomaly[M/OL]. Social Science Electronic Publishing. http://ssrn.com/abstract=2023883.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Chua C T, Goh J, Zhang Z, (2007). Idiosyncratic Volatility Matters for the Cross-section of Return-in More Ways Than One![R]. Working Paper, Singapore Management University.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Chua C T, Goh J, Zhang Z, (2008). Expected Volatility, Unexpected Volatility, and the Cross-section of Stock Returns[R]. Working Paper, Singapore Management University.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Eiling E, (2006). Can Nontradable Assets Explain the Apparent Premium for Idiosyncratic Risk? The Case of Industry-specific Human Capital[R]. Working Paper, Tilburg University.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Malkiel B, Xu Y, (2006). Idiosyncratic Risk and Security Returns[R]. Working Paper, University of Texas at Dallas.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Spiegel M, Wang X, (2005). Cross-sectional Variation in Stock Returns: Liquidity and Idiosyncratic Risk[R]. Working Paper, Connecticut: Yale University.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |