
媒体舆情、政府监管与市场行为——基于信息博弈的结构性视角
Media Sensation, Government Supervision and Market Behavior: A Structural Perspective Based on Information Game
随着互联网大数据时代的到来,各种新媒体不断涌现,社会主体的网络舆情意识日益增强,金融市场的参与各方和监管部门越来越依赖媒体舆情信息进行决策.本文爬取全网舆情1分钟高频数据,运用分位数脉冲响应方法探讨舆情的质量结构和情绪结构对市场行为的非对称效应,通过构建舆情传播动力学SC2I2R模型深入分析舆情传播结构对信息博弈的影响,从理论上研究舆情传播中的三方行为演化博弈机制模型.研究发现:1)政府干预前后的三方博弈系统不存在绝对的稳定均衡点,但综合考虑两种行为结构的市场会存在理论上的均衡状态;2)控制媒体报道的中性舆情占比,将有利于提高政府监管效率;3)政府监管在媒体舆情传播过程中有风险缓释作用,政府介入会降低消极投资者的市场占比,最终达到缓释舆情对金融市场的负向冲击,实现中性投资者市场占比的提高.本文研究为媒体舆情的政府有效监管和市场行为的合理引导提供了新的政策理论依据.
With the advent of the Internet Big Data Era, various new media have emerged, and the social sensation of social subjects has become increasingly fierce. The parties involved in the financial market and the regulatory authorities are increasingly relying on media sensation information for decision-making. By crawling the high-frequency data of the whole network for 1 minute, we use the quantile impulse response method to explore the asymmetric effect of the quality structure and emotional structure of the media sensation on the market behavior. At the same time, the SC2I2R model is used to further analyze the influence of communication structure on information game. This paper also theoretically studies the evolutionary game model of tripartite behavior in public opinion communication. The results show that: 1) There is no absolute stable equilibrium point in the tripartite game system before and after government intervention. If we consider the two game systems in general, there will be a possible equilibrium point in theory; 2) Controlling the proportion of neutral information in media reports will help improve government regulatory efficiency; 3) Government supervision has a risk mitigation effect in the process of media public opinion communication. Government intervention will reduce the market share of passive investors, and ultimately achieve the purpose of reducing the negative impact of public opinion on the financial market and increasing the market share of neutral investors. This article provides a theoretical basis for the government regulatory authorities to quantify the extent of effective intervention in media sensation.
信息博弈 / 舆情结构 / 信息含量 / 舆情传播动力学模型 {{custom_keyword}} /
information game / structure of media sensation / information content / media communication dynamic model {{custom_keyword}} /
表1 三方演化博弈模型收益矩阵 |
博弈模型Ⅰ | |||
主体策略 | 媒体舆情发布情绪信息 | ||
政府对舆情进行严格监管 | 政府对舆情进行宽松监管 | ||
市场行为 | 上涨 | 1. ( | 3. ( |
下跌 | 2. | 4. | |
主体策略 | 媒体舆情发布中性信息 | ||
政府对舆情进行严格监管 | 政府对舆情进行宽松监管 | ||
市场行为 | 上涨 | 5. | 7. |
下跌 | 6. | 8. | |
博弈模型Ⅱ | |||
主体策略 | 政府对舆情进行严格监管 | ||
媒体舆情发布情绪信息 | 媒体舆情发布中性信息 | ||
市场行为 | 上涨 | 1*. ( | 3*. ( |
下跌 | 2*. | 4*. ( | |
主体策略 | 政府对舆情进行宽松监管 | ||
媒体舆情发布情绪信息 | 媒体舆情发布中性信息 | ||
市场行为 | 上涨 | 5*. | 7*. |
下跌 | 6*. | 8*. |
表2 演化博弈模型均衡点稳定性分析 |
博弈模型Ⅰ | |||
均衡点 | det | tr | 稳定性判断 |
鞍点 | |||
鞍点 | |||
不稳定点 | |||
鞍点 | |||
鞍点 | |||
鞍点 | |||
鞍点 | |||
鞍点 | |||
博弈模型Ⅱ | |||
均衡点 | det | tr | 稳定性判断 |
| 鞍点 | ||
鞍点 | |||
鞍点 | |||
鞍点 | |||
鞍点 | |||
鞍点 | |||
鞍点 | |||
鞍点 |
表3 分位数脉冲响应变量的描述性统计 |
变量 | 均值 | 最大值 | 最小值 | 标准差 | 是否平稳 |
HS300 | 4073.04 | 4109.74 | 4036.90 | 19.20476 | 不平稳 |
Inf_quantity | 84.58 | 283.00 | 20.00 | 51.21 | 平稳 |
Inf_content | 70.12 | 87.63 | 49.60 | 5.33 | 平稳 |
Inf_positive | 51.56 | 170.00 | 9.00 | 35.27 | 平稳 |
Inf_negative | 23.81 | 93.00 | 2.00 | 15.91 | 平稳 |
Inf_neutral | 9.31 | 35.00 | 1.00 | 5.43 | 平稳 |
Inf_external | 0.42 | 0.98 | 0.10 | 0.17 | 平稳 |
Inf_internal | 0.58 | 0.90 | 0.02 | 0.17 | 平稳 |
表4 SC |
参数 | 日期 | |||
3.19 | 3.20 | 3.21 | ||
外部舆情场 | 0.2015 | 0.2198 | 0.2323 | |
0.1548 | 0.1840 | 0.1056 | ||
0.6437 | 0.5962 | 0.6621 | ||
内部舆情场 | 0.1271 | 0.2075 | 0.1402 | |
0.5541 | 0.5887 | 0.6344 |
陈福集, 黄江玲, 三方博弈视角下的网络舆情演化研究[J]. 情报科学, 2015, 33 (9): 22- 26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈云松, 严飞, 网络舆情是否影响股市行情?基于新浪微博大数据的ARDL模型边限分析[J]. 社会, 2017, 37 (2): 51- 73.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘晓星, 石广平, 杠杆对资产价格泡沫的非对称效应研究[J]. 金融研究, 2018, (3): 53- 70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
马知恩, 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
谌楠, 王恒山, 网络舆情政府干预最佳点选择的研究[J]. 现代图书情报技术, 2013, (3): 53- 58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王治莹, 李勇建, 政府干预下突发事件舆情传播规律与控制决策[J]. 管理科学学报, 2017, 20 (2): 43- 52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
魏丽萍, 网络舆情形成机制的进化博弈论启示[J]. 新闻与传播研究, 2010, (6): 29- 38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
吴鹏, 强韶华, 高庆宁, 基于SOAR模型的网民群体负面情感建模研究[J]. 中国管理科学, 2018, 26 (3): 126- 138.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
许启发, 刘曦, 蒋翠侠, 虞克明, 分位数向量自回归分布滞后模型及脉冲响应分析[J]. 系统工程学报, 2018, 33 (4): 472- 487.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
姚晶晶, 姜靓, 姚洪兴, 基于SIR模型的情绪信息传播研究[J]. 情报科学, 2018, 36 (10): 25- 29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张旭阳, 李丹珉, 谢耘耕, 媒介、网民、政府在舆情事件中的参与角色与作用研究——基于3600起舆情事件的实证分析[J]. 新闻界, 2018, (6): 56- 63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |