THE GEOMETRY OF HIGHER PATH-SPACES

BY SHIING-SHEN, CHERN ([i#ip

(Dedicated to Professor Elie Curtan on His Sevcntoth Birthday)

Introduction
]

The geometry in a space I, (2, ---, 2™ in which there is given
a system of differential equations of thz r-th order:

drat Y ETART Y dx @)
- Fid r - = =
(1) d’r 4 F \ d{"'l ’ ’ dt, x,t) 0 ! _-—_:.2,

has recently been studied by various writers.(*) [t seems to me that
the most natural way to study thix problem is to formulate the problem
as a problem of equivalence. By solving completely the problem of
equivalence the geometry in the space is automatically defined. By the
use of the general method ot Cartan the problem of cquivalence and the
definition of a geometry tfrom a geometric object become two aspects of
the same problem. We want to illustrate this point clearly in the  s-
cussion of the present problem.

The paper ix divided into five sections. In $1 we give the defini-
tion of a weneratized gceometry in the (rr-l) —dimensional space
d1lz d-u
(dt’ gt
of transtormafiong on the variables (af, t):

;U,t), the definition being invariant under the group

55‘ = .’i“'(&"v ces, 27 Y, | 3y E»'—— 0
[t:t :ax,ﬂ\r—‘.

2)

The discussion is based on the general theory of Cartan and we give in
§2 the results in terms of the notations of the absolute differential

(1) We agree that every small Latin index takes the values from 1 to » and
that repeated indices represent a sum of the terms.

(2) Cf. the biblivgraphy at the end of the paper.
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calculus. The calculations are carried out in the special cases r=2 and
r=38 in §3. In §4 we study the geometry of the differential system (1)
under the subgroup of the group of transformations (2) by which the
# are functions of 2!, «+., z" alone. In $5 some particular cases are
discussed. -

41. The Problem of Equivalence

Suppose there be given a system of differential equations in a
space Rs (2!, -++, 2*) of the same form as (1):’

' d® d™ 1% dz <
(1) dzr +F‘ d'tr_xy"': dt’g’ t)=0

_ We.pro;')o-se to find the conditions that there exists a transformation of
the group (2) which carries the system (1’) into (1). For this purpose
put

i dzt § 17 1g8
(3) ‘”x“ a—{ , ooy zr%l_—_ id?gd
The system (1) is then equivalent to the Pfaffian system
dz‘ - wli dt = _0’
dz} — z dt = 0,
(4) L] ... ® o © o
dz,, — z,_ dt =0,
dzd 4+ Fi@ay, +--, 2,2, 8)dt = 0.
Put again
r (Di = ai,;,(dx"— z‘;dt).

0 = u.‘,,;{dzﬁ—z','dt + ak,, ; (da? — z] dt) } )

©) { wp = a‘r,ugdz‘-x —zhdt +aby, ; (dai, — 2y dt)+ « -

+ @, ; (A2} — 2] dB) } ,

-
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Wy = @k { deiy + FEdt + ok, ;(del. — 2 dt) + - -+
ey, (aw —2ldt) |
where the «’s are auxiliary variables. We can define the @i, -+, ®f

from the =ystem (1’) in the same way as the ©’s are defined from the
svstem (1). Ju order that the systems (1) and (1’) be equivalent wnder
the group of transformations (2) it is necessary and sufficient that there
he a transtformation (n the ra+1 variables

By, Ty oony AL .
ond in the avxiliory variables
Cl;,k; a;‘z,k; et (lfr-l,,'
such that the following equations hold:
(6) @ = wl, «er, @t = o},
To solve this problem of equivalence we try to reduce the number

of auxiliary variables(*) by imposing on the o’s conditions of intrinsic
nature. The relations

(7 dol = — i, dt (mod. o, +++, )

S = 1,2’ LN ]'—1

give
. .
Qa1 6 = a:, &
or
. . . 0
8) Uy 6 = Qroy, = **+ = @), 5 = Ak (5aY).

(3) For the meaning of the so-called exterior differential forms and exterior
derivation cf. E. Cartan, Legons sur les invariants intégraux, Chap. VI, VII, Paris
1922 and E. Kihler, Einfiihrung in die Theorie der Systeme wvon Differcunticlylei-
chungen, Hamburg 1934. We have here employed the notation of Kihler.
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From (7) with s=1 we may put

9 do} = o} o] — o] dt,

" where o} are Pfaffian forms‘ m _a;ﬁ_i yeen, 28, L, a:'.? ad,;- On defir” ~

A? by the relations

(10 a} Al = gl A} =3}
~we have N ey
(11) o} = daj, AY — di aky, 1 A}dt  (mod.w)

Of course, by the form of the equations (9) the 9; are not uniquely
determined.

From (5) we have
do} = daf A% 0} — af dz' dt — af o, ; dzl . dt

(mod. 0y, +++, Wsy),
§=2,8, e00,r—1,

The conditions
12) dof = e} 0] — i, dt  (mod.wy, +++, Wey).
then give
abiy ;s =ai,; +afy;
or
(13) aly,; =(—1af,, ;. 8=2,3, c0e.
From the last equation in (5) we get
doi = daf A}l +af {dF*dt— ob,,, del,dt }

(m0d- ml, oo, wr—]).
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But

& .
dF*® dt = aziF; Az’ _, di (mod. vy, -+ +, 0,..4).
r-1

Therefore from (11), the condition

(14) dot =6} 0}  (mod.w,, +++, 00y).
.Implies .
- » _ 1 OF*
(15) “21,i = ) B,
From (15) and (13) the of, ;,---, a¥, ; are all determined.

We proceed to determine the auxiliary variables 0':.,,,- for which
Q=g =s—-1. We shall show by rmathemotical {uduction that it (s pos-
stble to determine these rariables oy, ; by imposing on the @’s some con-
ditions of intrinsic nature. Suppose of the quantities

(16) (126,]‘, 1 :;—‘(:‘5 a—l, (l=2,3,"',’r

all those for which

o
A
i

= o = s-—1
and those fér which

a=s, 1=f=q-—-1
are determined to be functions of the rn+1 variables

(17) by, ahy, eee, a2l 2t

To determine the af.,,j also as functions of the variables (17) we seek

for the conditions expressing that the exterior derivatives do} , do not

contain the terms o?_; dt and show that these conditions suffice to deter-
H h

mine a,, ; .

In calculating the coefficient of 0* , dt in do}_, we may neglect the
terms in w;, ¢, ®,q-1. We may thus use congruences mod. @3, «++, 0p—g-1
. L . .
in our proof. This gives in particular
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(18) di=aidt, «+-, dab e, = 2} o, dt.
Now, from (5),
Wi = i { dze 2 — ze1db+ alyy,; (dxl, — xhadt) + 5o
F 04y ey, ; (d2’ — z] dt) } )
in which the agas,;, *++, 0314,; are by hypotl:esis known functions of
" the variables in (17). Therefore we have ' e
dwpy = dai A% iy +a} {—- dely dt — by, dal, dt — .-
- a'.‘-ﬁ,,- doiga dt + da¥y, ;(dai,— 2l ,dt)+ ...
+ dady ¢, ; (doiay — 7l o dt) } )

By introducing the notation

dd 2d 20 3 o0 .
19 i = - i es e -, '—‘i - .f— — 0y F‘y
(19) at = ot Tar Tt b g T gp

® (20, **+, ¥, 2, t) being any function of the variables in (17), we
can write the above congruences in the form

(20) dw,y = dai A} wl, +ai { — dzl, dt — alay,; dul dt
dalc .
— (Pt oty ,.) dziy dt — -

da* .
—_ (_:gil-l_i +ad, a, ,-) dz i g dt} +o,
where the symbol @ denotes a sum of terms of the form wg wf .
From (5) we get
]
Al wiqdt =dxd o, dt,
@1) | A Wian dt =dzdedt +alon,,; deladt,

Al o} dt = dzdydt +aly ;dzd ,dt + <+« + abg, ;dal o, dt.
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These equations can be solved in terms of dxk, ,at, .-, (I.vf,'_ldt, giving
relations of the form

f dzb., dt = 0 whg dt,
((xf_q dt = A,Ic (sz-«(l+1 dt + b!; 71, .",J (')i 0 dl;
(22) © o s e s s 0 s 8 s

A‘-k (l):, dat + bl;dl 1, :i;:; (ni,;l di 4+ «--

il

dal  dt
o ) e — B 7_ Zk .v J ‘ t
L ya,; + 0510, ;) AT 0y dat,
where the 's are known functions of the variables in (17). whose ex-
pressions can easily be found. By comparing (20) and (22). we see
that the condition that the coefficient of ©f 4 dt in do! _ybe zero is given by
-1

da® \
H o} 1] ] 1] 14 s—11,7 ] 14
(23) Qgq,; — bsa a,; — (e—114 A q-1,; ( at + g 2,‘) b 4=,
da,: 1 j
e e — —1 4—1. 1] .
(-—d—t I ak, ,,,,.) =0.

From these equations the (If,‘,,,,- are . .mpletely determined.

By choosing the ¢}, ; in the above wav. we can write the equations

(12) in the form

s=1 ”

2 e S — o v N i Pk o o, .
@) dvi=oon—oka dbd BT Pk a0 S5 Bl
a=2j

Whel‘e we mayv assume

95 i g _

(25) nauit + Dok = 0

In particular, we have, for s=2,

(26) dw! = 6} ) — whidt + Phy e 0] of + P g 0] 0f + +-o

R
+ P;"y”'k (01 (A), .
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The quantities Pj,, ,» can be decomposed into their symmetric and skew-
symmetric parts, so that we may write
i i * i*
Plpase = oo e + Poyons
where
i = . *
' Pz,u,ik + P'2,12,kj =0

< * &k i L £
Pz,n,.ik - P2,12,k:' =o.

Then we may write ~ T T
i i i Y, i i
d(l)l = ( 0; + 7 2,120k w, Jwy —w, dt)

. . L : - . .
s __ 3 -t k J D 7ab FAPIN |
dw)y = ( I ) S ml) W) — Wy dt + Iy 43,50 ©] 0]

* . . .
. FAPN] ] j B
+ Pz,]g,jla W) W, + e+ Pﬂ,l'ﬂ'" w; Wy .

From these equations we see that there exists one, and only one, set of
Pfaffian forms ej such that the equations (9) and (24) hold, with the
conditions

(2% sz,u,ik + F} o = 0.
The exact expression of o} is of the form
(11a) o] = dai A — a al A} dt + b Hpg A% AL 0,

where Hpo= Hg, are functions of the variables in (17). By (10), these
equations can also be written

(11b) 0} = —aidA%—ak oby AL dt + b H AT AR " .
We may also solve these equations in terms of dal and dA:’ , obtaining
dai = a} o] + af a},dt — ai H At o,

i

(11c) ]
dAS = — Ao — ab; Ajdt + HE, A3 Af o}
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The o} being thus determined, we need still the expressions for
dei. On applying the theorem of Poincaré to (9), we get

»

28) (dsi= vk oh= = PLogumutat ) wi=o0.

a

This shows that if dej — e} o} contains a term involving e, it must be of
the form e}, 2. To see that it actually contains no term of this form,
we apply the theorem of Poincaré to the equations (26). This gives

- o

: i % .k Y I h 4 ¢ [N
(29) ((19,' — o 0] + dP} 1o 55 ) + Py 0 8% — Py ok 0 67
_ Pi I n + . i
512,88 W, Y * v)w; =0

where the terms non-written are free tfrom . Now, from the form of
o} we see easily that Py, . is of the form

Pé,w,ik = (m fra A5 A%,
where 17, i a function of the variables in (17). Hence
d ( .zl.?"Pj,m,,-,‘ a af;) =0 (mod. w, dt).
By developing this relation and taking aceount of (11), we obtain

: z 3 { ! 1
(]P;,lz,kj - pz,w,kj o + P‘;,l?,li 6y, + P

Za12y

R (mod. w, dt).

By comparing thiz with (28), (29) we conclude that rlo§ — o} e’; does not
contain o. On the other hand, we have, from (28),
-

doj — ey, o — EIPE,m,m ohdt=0  (mod. w).
o=

Therefore de} is necessarily of the form
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» : % s h { L]
(30) doj =i o%+ I Pi,,u 0kdt + Ti o dt
a=1

’
+ 21 Ry i 0 @l
| a= :

where, by (28), the quantities T, and R}, ,, are connected by a set of
relations to be given below.

We now write tqg_gt;her the complete set of equations for the ex-
terior derivatives of o}, of. By (9), (24), (14), (25), (27), (30), they
are as follows:

[ doi = of wi — widt,
C s e S i
L B, 3 7 1] Y 1] — .o 0 ) —
dwy = 6; 0} — @}, dt + a.El Bz‘___l P ap,ik o 08, Y=2,8,+0r—1,
a=f
() ¢ . . o=l =t
do, = o; wl + a§l 5§1P;"aﬂyfk w Of +a§lQa,k w, di,
«=B -
S > ,. . r .
{ de; = Ol:: 9,;: + a;[ P;’,la,jk (Dz di + 7;,‘ u)f dt +u§[1:;"]kl 0)3 (Dlly

with the following relations between the coefficients:

a= 1, e, 7‘“1'

i +P: ; =0)
Y,a(l,jlx {,ﬁa,k] -Y = 1, sve, 7,

Py ok + Phia ki =0,
Tilg and T‘. : = 0). !

an 'S

R(‘I,J'H - R&,‘bf = OD a# 11

Riu+ Rim=0,

\ R;dﬂ + Riu + RS = 0.
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According to the theory of Cartan,(') the complete system of
invariants of the differential system (1) Is formed by the quantities P,
Q. R. T ond their covariant derivatives. This gives a solution of the
problem of equivalence.

We mayv also give a geometrical meaning to the fundamental
equations (I). In fact, by the Pfathan forms co;,,uj we have defined in
the space a generalized geometry, the definition being invariant under
the group of transformations (2). Consider in particular the case
when the given system s
Y d-rxi B
(31) dtr =0
Then all the guantities P, Q. K, 7T in (I) vanish. FEquations (1), to-
gether with
(32) d{dt) = o,

are then the equations of structure of the group of transtormations G:

Jx - . . - .
(o =afa®+ i 14+ bi 2+ oo+ bIE + b,

—
[
oM

<

2t*=t+A,

the Ptaffian forms ®,o being the relative components.(*) When the
given system is of the general form (1), we may still interpret the w, 0
as the components of an infinitesimal transformation of G. The space
then becomes a non-holonomic space with the tfundamental group
G. The equations of the elements of the space are, from (1),

(1);‘ = ess =— (1);.: dt:o'

They are formed by the elements of contact of the (r—1)st order and
the parameter t. They constitute a space of 1n-+1 dimensions.

Summarizing the above results, we have shown that given in the
space Ra « system of differential equatioms (1) it is possible to define
in the space a generalized geometry in the sense of Cartan, the defini-
tion being invariant under the growp of transformations (2). The

() E. Cartas, Les sousgroupes des groupes continus de transformations,
Annales de UEcole Normale Supérieure, 1908.

(*) Cf. E. Cartan, La théorie des groupes continus et la géométrie différentielle
traitée par la méthode du repére mobile, Paris 1937.
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equations of str-ucture of the space are given by (I), from which it
follows that the fundamental group is the group G defined by (33) and
the elements of the space are formed by the elemenis of contact of the

(r—1)st order z}, ,-++, z* and the parameter t.

§2. Relations of the Above Theory with t:he
Absolute Differential Calculus
Strictly speaking, the geometry thus defined in R, is not a gen-
eralized affime geometry (affine connection), as the group G is not an
affine group. - But - as “‘we have regarded ¢  as "an invariant, every
transformation of G with t=const. will be an affine transformation.
With the guidance of this remark we shall show that the above in-

variant theory can also be de\eloped by the methods of the absolute
differential calculus.

We begin by applying the theorem of Poincaré to the fundamental
equations (I). By considering only those terms which contain e, we get

dQgx + Qis 0 — Qe @1 =0 (mod. o, db),

i I i —
APYap,jk+ Pyap,tk 03+ Pyap,jt 0~ Py gp i 0 =0 (mod. o, db),

AT+ T 65+ Th oh — Th 6i =0 (mod. 0, dt),
dR:"ij + Rz,,..u e + R;’jml oy + R:‘,,-km o — R:,j]‘l o =0 (mod. w. di).

By making use of (1la) and (11b), we see that these relations are
equivalent to saying that the quantities Q, P, T, R are of the form

Qi = ain 5 AL,

P, = al, o AT AL,
(34)

T = ah 93¢ AJ AL,

Riu=al h3u AT AL AL,
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where the e, f, g, h are functions of x} ;,-+., 23t and the Greek indices
are omitted for simplicity.

As stated in §1, the complete system of invariants ot the differ-
ential system (1) consists of the quantities P, Q. T, I! and their covariant
" derivatives. By the covariant derivatives of an invariant S(.. {, «) is
meant the coeflicients of the Pfafian forms e, dt, o in the expression

(35) AS = S1 08 4+ o0 4+ S, 08+ Sodt + S of
Put, for example,

. 7. . . .
(36) ’]15:;,]'1;‘ :ﬂE[ Igéﬂ,j/\'l;)/l wg' + Ic:*)”‘:‘yo dt — lc:/-y""u “;"

e m i m ’™ T
- Ru,i‘ml e Ra,jhm e+ ]tu,,jlsl Oy -

The coefficients Riq um, Ri,uo are the covariant derivatives of I ju
and are new invariants of the system. These new invariants are of
forms like those in (34). This can easily be proved by making use of
the fourth equation of (34) and the equations (11c¢). More generally,
all the invariants obtained by the process of covariant differentiation
from the quantities P, @, T, R and their covariant derivatives are of
forms I° those in (34).

The auxiliary variables a} have nothing to do with the elements
of the generalized space, which depend on af,,-«-, 2%, {. We may
interpret them as defining the reference (in French “repere’”) at the
“point” (il ,,--+, 2%, {). At each point of the generalized space we

may attach a definite reference, called the natural reference, such that
al = 3}
and
w' = da' — ] dt, etc.

By this definition, the system of natural references depends on the system
of coordinates x¢ in the space R.. We choose the system of references
such that in the coordinates x* it is the system of natural references.
When the coordinates undergo a transformation (2), we have
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& = (di:" — & dt) = dof — 2} dt,

which gives

6N A= ok
and
(38) ‘ 6l = o -

The invariantive character of the quantities P, Q, T, R is then expressed

~“by relations usually employed in the definifion of tensors in absolute
differential calculus. For instance, from the P;,, in (34) we have

DI . pi
ij—- ik 2

or, with respect to the particular system of references chosen,

(—l:n pq[j’; fig = f;lc’
or, by (87) and (38),

om __ O™ , Ox’ oa"
(39) fra = Y fie a;p 77 -

Thus we see that our invariants are essentially the ordinary tensors in
another form. The ordinary definition of tensors corresponds to a
particular choice of the system of references made in terms of a definite
system of coordinates. According to Cartan we call

P{ L, Y=213;"I!,r . -
yraﬁn]k a=l".., ‘Y—l,ﬁ=1,'0',r
a=f
ka a=1, ., r—1
the tensors of torsion and
™ Ry i aml, e,

. ¢
the tensors of curvature,
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The covariant derivatives defined above can also be identified with
those of the absolute differential calculus. In fact, we have, from (5),

w:l = a]: { dzz_] - x{; dt + a?u’j (dwa-_g - :‘::‘I_—l dt) + et
[]
+ ak oy,i(d2? — 2] do j

the a’'s within the braces 'being definite functions of x,4,-+-, 2, L.
Consider, for definiteness, the functions P}, defined by (34). By for-
ming dPJ‘:k and neglecting the terms in ® whose coefficients give essentially
“the same quantities Pi,, We get— — :

: . m
APjk = tm ( %’gq + az1, foa — ai,],,, fia— “éx,qﬂr‘l)AgAg dt

+ {( gﬁ’;' — HT fog + Hoifor + qufz:)(dw‘—xid”

+ %‘;{’— (da} — o dt) 4+ v + fﬁ‘-’— (e, + Fidt) } A AL (mod. o).

r—1

By substituting the expressions of da* — 2! dt, ..., dzt_, + F'dt in terms
of the w's, we get, as the coefficients of the w’s and of dt, the covariant

derivatives of Pi,. Put
(40) dP}x: = P']:,jlc’l (Di + P;,jk,l (1)2‘ 4+ see 4 P:,jk,l (0" + P,ik,o dt (mod o).

With respect to the system of natural references, so that ai, = 8}, the
covariant derivatives of PJ, are defined by the relations

( ! — dP ;.'I:.

i 2 1 i t i
ko =g + aax,xij — Qn,; Py — acy,x Py,

T Y m ) m
Pl,ik.l + P'.r,z'k,m A, + e + Pr,jk,m Uy ya,2

— '%Z’;k —- H:;P;k + Hj :k + H:kp;l!

“ o,

. m ; m
P;,.fk,l + P;,ih,m Qg1 0t + ver + Pr,ik,m Uy y208 = '5&} ’

— T —
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; ; m oP;
P‘r—l,ib,'- + P;,ik,m Az = ozt *
- . r—2s
i np= P
e :
» axr—_l’

The compaonents 5,0, P,uy define 1'+1.nev(r tensors, the former one
being of the same order as Pj, and the latter ones of an order higher.
~ Thus we see that by the differential forms p)f, r +_1_different processes of
covariant differentiation can be derined.
It may be mentioned that in the case of a vector »' our covariant
derivative 1%, coincides with the differential operator Du’ of Kosambi.(¥)
But the other covariant derivatives are not the same as the so-called

“Kosambian operators” ,;u'.

§3. 'The Cases r=2 and r=3.

We shall give some explicit formulas for the tensors of curvature
and of torsion and for the covariant differentiation in the special cases
r=2 and r=3.

The case *=2 by which the given system of differential equations
is of the second order has been thoroughly studied.(?) It will, how-
ever, be useful to give the results here. In this case, the equations of
structure (I) become

doj = ojof — o, dt,
(2) < doi = of o + P} 0] of + Pi; 0] of + Qi o} dt,
d s PR | s h ¢ F ] dt [ L P 3 PN ¢
B = O U5 + Tj]g W, dt + 2,7k w, + R]’Ju w) Wy + RZ,)‘H w. W,

As discussed in the last section, we may simplify the calculation by taking
the system of natural references, so that

(8) Cf. Bibliography No, 8, pp. 64-65.
(7) Cf. Bibliography Nos. 2 and 9.
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o] = da* — 2 dt,
(43)

- . . _‘ = K3
of = daj + F'dt + % gf (daf — i dt).
1

263

By substituting these expressions in the first two equations of (42), we

get
f
A T 1 aF*
nj= =g oz ! 3k (dz® — 2y di) — o ax{ dt
| Pl =0,
.1 ¥F 1@ 1 @F 3
(4 i ST Begaet T azkdr’ T8 dxided Ash
1 ¥R oF
8 dxidx® 0ox)
Qi OF _ 1 oFF OFF 14 aF‘).
7T ot 4 3% o 2 dt (am{

.

These equations give the components of the tensor of torsion. For the

calculation of the tensor of curvature, we may put

dPiiw = P ey 0) + Py 8 + P ppdt (mod. o),
(45)
Qi = Qli,l of + Qi 05 + Qhyp dt (mod. 0),

and then appiy the theorem of Poincaré to the second equition ot (42).

This gives

7;~ = - Q;;IJ — 2 P;’,]h;
(46)

R{,ik = = Px.,/;u.%
By utilising (44,), we have

P _ 1 a:}F(
47) . Rz,:‘ld = 2 ax{azpiaxtl .

We may also give the formulas for covariant differentiation.

Let
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—

Xi = ai §. (xr—h tee L, T, t)
be a vector and put

v
£3

i

holt 4+ Xi ol + ){{.,dt (mod. e)

Equating the coefficients of o} of dt on both sides of the equation, we
have, referred to the system of natural references,

aX' 1 ax* 3FF |, 1 &F

S _)E"" T ox* T 2 oxf oxk - E2-oxidat- X,
; _ BX¢

o Xie = B>
axt 1 aF®

Yio =g + 2 2] X

Next, we consider the case of a system of differential equations
of the third order (r=3). The equations of structure of the space are

]

et | 2

3
; - ; ‘ i oo
dw, = 8,0 —w; dt + = Pz,la,ik W 0,
a=1
3
i i ¥ ik r 3
do; = 6, wy + El Pira,ie 01 0g + Py op 50 ©F 0
o=
(49) !
. . » . I : 4
+ Paaa i 03 05 + Q1 0] dE + Q) 003 dt,

de} = o} o% + EI P; a0 @4 dt + Ty of dt
a=

L + 2 R:x,jkl (0(’: (.0:,

a=1

By applying the general method described in §1 and employing the system
of natural references, so that ai = d%, we get '
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o} = da' — 2f dt,
wf = daj — zidt + ; %xF—, (de? — ] dt),
2
(50) - A 2 JF* j j
©f =dul+ Fidt + g gx, (day — a3 dt)

(1 d 9F' _10F' OoF' ‘ :
{8 dt Qal Ty oz, oz } (dx’ — = dt).

These expressions, when substituted into the first two equations of (49),

give _ _ » B e R S

[} A ] 3y ] aF‘
of = by (dat — af dt) — 3 axi dt,
pio - L OF 1 8FF aF
5125k = 6 oxfox’ T 9 oxfox. oak

(51) ) .
4 1 &F° 1 &F° 3F!
6 oxfoxd 9 oxkdx! dxd -
i _ 1 o
1'.’,]:’,,,’!; = - 3 ax?allﬂ; 5
where
. o _ L @1 ¥R B 1 FF
(52) WS T 6 dwfewy T 9 oxfowl Bzk T 6 dakdw
Pl ¢ :
+ 1 ©F' ©oF

9 Oxkox, Baf

while the expression for P§ ., is complicated and uninteresting.

By applving the theorem of Poincaré to the equations (49), we
may show that the tensors

H s ) i H 3 3
)3’11 yihy ! 3513435, 4 3,22, h, P3)23’j"7 TJ"‘» Rlu’"'y RR;J’"’
can be expressed in terms of the tensors
i ] 4 i T s [
PQ:“,J'": P2y1215"y P’A‘;lssi", P3,1275’0, Ql:") Qz,h, R’-’yﬂ"

]
and their covariant derivatives. Of the latter tensors we have
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(53)

N

. SHIING-SHEN CHERN -

3FF 1 9F' dF' , 2 QOF' oF* oF"

| J— o R ! - . -
Qi e T3 onl ouf t 27 o oat oa)
209F' d BF 2 d 313,‘,) oF!
T9 ozl dt o) " 9 dt\ozl ) Bwy
—1 a@ oF ’
3 dt* ozl °
Qi, = -OFL _ 10F' oFt d dF
% % 0w T 8 ow! dxj ~ dt 9z}’
oo O 2 ok AR
HiM T dzk T 3 Oar Owk

the expression for P;',m”-,, being complicated.

Xi= af E" (@eq, -+, 1y, 7, 1)

be a vector and put

54

dx' = Xi,of + Xi.of + Xi,o% + Xipdt

Referred to the system of natural references, we have

(55)

the group of transformations (2).

X;o =
X]i,y. =

Xip=

| Xt =

dx* | 1 9F _,

e T3 amp X

BX¢ 1 ox! 9F' | X! (1 9FF
32" T 8 ozt oy T ozl \9 Gap
1 d oF

A oa oF’\ . o1
~ 3 4t azg) ha X,

/Xt 2 X! BF
oz» — 3 Ozl Ox¥
ox¢
oz}’

§4. The Differential System Studied under a
Restricted Group of Transformations

invariant under the restricted group of transformations.

[1940

We may also give the formulas for covariant differentiation. Let

(mod. 8).

orr

oz}

We have studied the geometry of the differential system (1) under
All these properties are certainly
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=1z @, .., 2", %
(56) 3z | 0

it =t

But under the group (56) we have » more invariants which are the
coefficients . dt in w!, ..., ©! and whose explicit expressions are

1 ’
[ v = «f 2",
vy = a;.( 27+ af,; ) ,
T ceeieee. .
(57) s

' i ] h WJ h a7
Uy = a,:( Ty + Xy + e + Us s -1,i M)

. ; h . n .
vy = al'a( - F* + lr1,3 Ty + e + Urra1,i wi)’

where the a.f,,,,- are functions of a}_,,+++, 2%, ¢t determined in §1. The

equations in (6), together with the equality of the invariants in (57)
and the corresponding invariants formed from the system (1’), are the
necessary and sufficient conditions that the systems (1) and (1’) be
equivalent under the grou of transformations (56). From the form
of the invariants (57) we say that they are vectors in the generalized
space. Hence the geometry of the differential system (1) under the
group (56) is the geometry of the generalized space defined in §1 and
the set of » vectors (57). This interpretation is not very satistfactory,
as the vectors (57) have no relation with the generalized space defined
above. In this section we want to show how in some particular cases
it is possible to define a generalized geometry with a different funda-
mental group.

By the general theory the covariant derivatives of the vectors
v$, +e«, v} give new invariants. Put
(58) dvé = vl‘B,, O + oo + viﬁ,, ol + v“,,, dt + vé o]

|

§= 1121°" »
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we get the new invariants viﬁﬂ-, vE’,,,,. When B=1, it is easily proved that

(59) vhy = 8} vh; = e = vl = 0,0, = v}
If we set

i = &,
where ¢! are some properly chosen constant values, we have dv} = dej=
0 and
—(60) - ) = — v 0] —widt— il 2
Substituting (60) into the first equation of (I), we get
doj = e} o] + v}, ; 0] dt + € o! dt.
Put
@ = o] + € dt.

The above equation may be written
i
(61) doj = e} & + vi;,; & dt.
From (60) the } are linear combinations of w;', dt, and e!. The equa-
tions giving the exterior derivatives of the other Pfaffian forms are of
the form
doy = e} a] + Qf
dof = et w! —w'  dt + Q' v=3;4,e. ,r—1
Y iy T+ ¥ s ’ ’
(62)
do; = e} 0] + Qf

| ik s
de,--=9,.e,-+9,-,

where the Qj, Q; (y =8,++¢, 1), ©} are exterior quadratic forms. Thus
our geometry may be regarded as a generalized geometry with the
elements (zi_,, ¢+, 2!, t) and'the fundamental group
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doy = of 0] ()

dm';[ = ol ! — ‘”:,51 dt, y=13,4,+-»7r—1

v
(63)
I
do, = o; 0y
¢
[ 3 I
du} = o} o

such that there are given r—1 extra vectors 23, «++, 2! in the space.
We see that by reducing the fundamental group to (63), the number of
veéctors in the space is-reducedfrom 7 to rp=1._.

When ¢, ; = 8}, we may put v = ef= constants and express o} in

terms of off,m'é,m.’f, (of,dt,ﬂ?.'l‘he process indicated above can still be
applied and we can define a generalized geometry with a different funda-
mental group. But then the number of vectors in the space may not
be reduced, as we get a new vector r3,0 and we have still a system of
r=1 vectors rze, ¢i, *++, vr, which has no relation with the space. In
general, by assigning to the components of these vectors and of their
covariant derivatives fixed values, the rz;; can be determined as functions
of 2., »++, 2%, t. The v}, are then Pfaflian forms of xz%_j,+-«, z*, tand
we get a generalized geometry whose fundamental group is the group
of translations

(64) =gt + b, "=t 4+ A.

In some particular cases, the definition of a generalized geometry
with a fundamental group other than the group of translations (64) is
possible. For example, when » =2, and when the vector

; ; 1 oF* ;
65 g = ‘(—F"+ \ :c’)= ,
(65) Vg Uy ) ax{ 1 Y

the above discussion shows that we can define in the space an affine
connection with the fundamental group

(8) It is to be noted that this group can not be represented by a group on
the variables x1,...., #™, t which is simply isomorphiec to i%
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7' = qf 2" + b}
(66) e '
t* =14 A.

This result we have also proved elsewhere.(®) \

We may also consider the case r=3. By (50), the invariants (57)
here become

k -
i=al(t+ 3t 4 ) LI ol

. 1 d oF*
= 30 s e s = % v j
@3"‘1'-( F'+ 5 % ©F 300 o @
1 dF* oF! j)

9 3t oz} Y1)

(67) <

\
From the general discussion we can always define in the space a gen-
eralized geometry with the fundamental group (63) (for r=3) and with
two extra vectors vi, vi. Put

(68) dvy = vi,,; 0] + vl ; 0] + vi,; 0] + vi, dt + v ef.

We find, by (55),

. R
¢ ¥y *

Vig,; = O + 3 « Y AT,
(69)

i
V2,0 = va,

Suppose by the differential system under consideration the follow-
ing conditions be verified:
G AT
dxddxy ¥1 7 %
29F ;. 1 doF ; 103F dF ;
—F tg g Bt g at e Y9 B oef BT O

(70)

(%) Cf. Bibliography no. 9.
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Then we get from (68), by setting the invariants 1:, equal to some con-
stants e},

T i i T
Wy = — Pyo,; O] — Vyy,; W — &5 o).

Substituting these expressions for o) into the =econd equation of (49),
we can write it in the form

d(w} + & dt) = o) () + eldt) + ri,; 0 dt + v}, o} dt
2 $2) 1 224 2

3
+ =

[ B a=

T J o
1P2,1a,]‘k (,01 w(/. -

Putting @3 = oj + & dt, we can then write the equations of structure of
the space in the form
d} = o) 6] + 4,

do} = e! @] + i,

e
-

(1) ¢
doj = e} w] + QI

e
L do} = e}, o+ O},

in which Qf, Qf Qi ©! are exterior quadratic forms in &}, @} o}, dt.
This defines a space with the fundamental group

f do} = el &

[

dol = 0l &
(72) )

dowl = o} o) ,

P .ot ok
L de; = ey 6} .

Therefore, given in a space a system of differcntial equations of the third

order by which the conditions (70) wre satisjied, it is possible to define
in the space a genefalized geometry with the fundamental group (72).
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It is possible to obtain differential systems satisfying (70). For
example, we may take

(73) F'=d (2, 2,02 + 8 (z1,2,0).

Then the first equations in (70) are identically satisfied and the second
equations give

of = do "
j = axJ 1 3
0 1 ]a 3 1 3o 1
(=gt s el g o e o]

If of (4, 2, t) is.a set of functions satisfying (74,) and the B¢ are deter-
mined from (74.), then the system of differential equations

d3x’ :( dx d?xi ;f o _
gives rise to a geometry with the fundamental group (72).

35. Some Particular Cases
If the given system of differential equations is

@1 Lz o,

or reducible to this form by a transformation (2), all the tensors of
torsion and tensors of curvature vanish. Conversely, when the tensors
of torsion and the tensors of curvature are zero, the given system can be
reduced by a transformation of the group (2) to the form (81).

Suppose we consider the case when the tensors of torsion are zero:
Fyapit =0 Qg =0
By applying the theorem of Poincaré to the first equations of (I), we get

T, of m’y dt =0,

r : .
QE]R;",‘I»“):@‘Q’? ='0, Y= 1,2,"'1‘.



- FEB.] THE GEOMETRY OF HIGHER PATH-SPACES 273

The first equation gives
T;h = 0
and the second equation gives, when =3,
' o

A.l: i
R(I)J"“ = 0'

Hence ivhen the temsors of torsion are zero, the temsors of curvoture
must be zero if r=38. If =2, the tensor R;',,-M is symmetric with
respect to the indices j, k, I, but may not be zero.

_ L=

Next consider the case when the tensors of curvature are zero:
4 — L
P‘_’,]a,jh - 0; a'—i-' 1!
: : .
Pigiw + Tiw =0, Riym=0.

The application of the theorem of Poincaré to the equations of structure
shows that the equations of structure must then be of the form

P . 7 .
d(J)Y—G;-(D‘—(D;H_Idt, ‘Y—l;‘z!°°'77_‘1)

Y
A r—!

(76) doi = ef ol + EIQ;,,, o dt,

a= :

de} = o} o,

and that we have
77 dQ&,h = Q;,k; “)z + QZ,m dt + Qf},,k 9; - :1,)' Oh
with
(78) Qin; — Qlin = 0.

In this case, the equations of structure (76) may be written in
a simple form. In fact, consider the system of differential equations

re1 -
(79) ) dtt = E, [ Q4 0f + 8 o} + B, dt.
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To see whether this system possesses solutions t} ti, as functions of
a:f_l,---z",t, ai, we form the equations obtained from (79) by exterior
derivation. On taking account of the equations (77) and (78), we get

r=—1 r—1
(80) dti, dt — 21 Qoo 05 dt — = Qf a0k, dt — B, ofdt = 0.
a= a=1

According to the géneral theory of systems of differential equations ()
we easily see that the system (79) possesses solutions in the unknown

functions &} Efo. Moreover, from (79) we see that tpe g do not con-
~tain the variables ¥ ,"and that they are of thé form =~ =~ -

(81) ‘ Ei = a,‘; o (Tr—2, e, X, T, t).

By making use of the functions Ef the equations of structure (76) may
be written in the form

dco; =e§m§—m§+ldt,, Y=1,2,eve, r=1,
. ) I
(82) § do; = ef ol + d&'dt -t o} dt,

de! =6} of.

.

It may be shown that when the functions F* do not contain the
derivatives of the (r—1)st order x*_, the space i3 of zero curvature.
Conversely, we want to show that a system of differential equations by
which the generalized space defined is of zero curvature can be reduced
by a transformation of the group (2) to the form

. dzt a3z

83) G P (G o B 5 1) =0,

. . . . : . L d izk .

in which the functions F* do not contain the derivatives qt In fact,

put
(1?) Cf., for example, E. Kahler, Théoric der Systeme von Dicerentialglei-
chungen.
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o = 0f — tidt.

We get from (82)
dodl = o} @ .

This shows that the Pfaffian system

(84) (D}=0, e, wi-q:o; wr:‘o

or the system of differential equations

(85) ——-‘fitar. 4+ Fi— @f =

can be reduced by a transformation of the group (2) to the form (31).
As the variables %}, % _; .-., %, #, t are functions of z} 4 %74 +++,
zi, z*, t only, transformation which reduces (85) to the form (31)
must reduce the system

Tt .

to a system of the form (83).

Lastly, in order that the given system of differential equations
be reducible by a transformation of the group (56) to the form (31),
it is not sufficient that the tensors of torsion and curvature be zero. A
necessary and sufficient condition for this is: 1) the tensors of torsion
and curvature be zero, 2) the invariant vy in (57) be zero, 3) the
covariant derivatives of the invariants vy (a=1, 2,++, » — 1) be given
by equations of the form

dvg = 0gy + v dt + vl 0}, a=1,2,..., 72,
(86)

[ SR )
vy = 0; + Ve 9; . -
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