
气候变化如何影响金融系统性风险——来自极端气候事件和绿色(棕色)资产的双重证据
王宗润, 牛娅鑫, 任晓航
计量经济学报 ›› 2024, Vol. 4 ›› Issue (4) : 1009-1030.
气候变化如何影响金融系统性风险——来自极端气候事件和绿色(棕色)资产的双重证据
How Climate Change Affects Systemic Financial Risk: Evidence from Extreme Climate Events and Green (Brown) Assets
本文研究了气候变化与中国金融系统性风险之间的关系. 首先, 本文以极端气候事件为切入点, 测试了我国银行、证券与保险行业的系统性风险对极端气候灾害的反应速度, 并评估了不同金融行业抵御极端气候灾害的能力, 结果证实了部分极端气候事件可能会加剧金融系统性风险. 其次, 通过构建非线性自回归分布滞后(NARDL) 模型, 本文分析了绿色和棕色市场股票指数表现对金融子行业系统性风险的影响. 结果显示, 短期内棕色资产风险的提高及指数的降低会显著增加金融行业的系统性风险. 但从长期来看, 棕色资产指数上升会增加银行业系统风险, 而绿色资产指数上升有助于降低证券业系统性风险, 绿色资产风险的减少会显著降低银行业系统性风险. 本文的研究不仅强调了应对气候灾害频率和严重程度增加的政策重要性, 还提出对绿色和棕色行业实施差异化的金融审慎监管建议, 以在降低物理风险的同时, 最大限度地减少气候政策实施所带来的转型风险. 这对于金融行业改善风险管理模式, 降低物理风险与转型风险对金融系统性风险的冲击具有重大意义.
This study investigates the relationship between climate change and systemic risk in China's financial system. First, it examines the responsiveness of systemic risk in the banking, securities, and insurance sectors to extreme climate events, assessing how different financial industries withstand such disasters. The findings confirm that certain extreme climate events can exacerbate systemic financial risk. Second, by constructing a nonlinear autoregressive distributed lag (NARDL) model, this study analyzes the impact of the performance of green and brown market stock indices on the systemic risk of financial sub-sectors. The results indicate that in the short term, an increase in the risk of brown assets and a decrease in their indices significantly amplify systemic risk in the financial industry. However, in the long term, an increase in the brown asset index raises systemic risk in the banking sector, while an increase in the green asset index reduces systemic risk in the securities sector. Furthermore, a reduction in green asset risk significantly lowers systemic risk in the banking sector. In addition, this study underscores the importance of policies addressing the increasing frequency and severity of climate-related disasters. It recommends differentiated financial prudential regulations for green and brown sectors to minimize transition risks associated with climate policy implementation while mitigating physical risks. This approach is crucial to improve risk management frameworks in the financial industry, thereby reducing the impact of both physical and transition risks on systemic risk.
气候风险 / 系统性风险 / 极端气候 / 绿色资产 / 棕色资产 {{custom_keyword}} /
climate risk / systemic risk / extreme climate / green assets / brown assets {{custom_keyword}} /
表1 控制变量的选择与计算方法 |
控制变量 | 计算方法 |
市场收益率 | 上证综指日收益率 |
TED利差 | 1年期SHIBOR利率与1年期国债即期收益率之差 |
1年期国债收益率变动情况 | 1年期国债即期收益率的变动水平 |
信用利差变动 | 计算10年期企业债即期收益率(AAA) 与10年期国债即期收益率之差, 再求其变动水平 |
期限利差变动 | 计算10年期国债即期收益率与1年期国债即期收益率之差, 再求其变动水平 |
房地产超额收益 | 房地产部门收益率与股票市场收益率之差 |
表2 描述性统计 |
变量 | 定义 | 观测值 | 平均值 | 标准差 | 最小值 | 最大值 | 偏度 | 峰值 | ADF检验 |
bank_ | 银行业 | 3, 520 | 2.236 | 0.817 | 1.276 | 7.243 | 1.925 | 8.023 | |
stock_ | 证券业 | 3, 520 | 2.999 | 1.044 | 1.284 | 8.145 | 1.375 | 5.249 | |
ins_ | 保险业 | 3, 520 | 3.118 | 0.910 | 1.557 | 7.831 | 1.418 | 6.422 | |
bank_MES | 银行业MES | 3, 520 | 9.417 | 2.994 | 5.813 | 28.99 | 1.869 | 7.914 | |
stock_MES | 证券业MES | 3, 520 | 20.89 | 5.854 | 11.81 | 49.09 | 1.262 | 4.984 | |
ins_MES | 保险业MES | 3, 520 | 11.95 | 3.071 | 6.554 | 27.10 | 1.336 | 5.943 | |
index_EI | 中证环保指数(EI) | 1, 820 | 7.449 | 0.268 | 6.894 | 8.022 | 0.107 | 2.251 | |
VaR | EI指数风险-VaR | 1, 820 | 2.665 | 0.785 | 1.464 | 6.044 | 1.032 | 4.165 | |
ES | EI指数风险-ES | 1, 820 | 3.340 | 0.984 | 1.837 | 7.537 | 1.030 | 4.154 | |
index_EM | 中证环境治理指数(EM) | 1, 820 | 7.676 | 0.419 | 6.994 | 8.536 | 0.176 | 1.907 | |
VaR | EM指数风险-VaR | 1, 820 | 2.531 | 0.765 | 1.596 | 6.538 | 1.824 | 7.147 | |
ES | EM指数风险-ES | 1, 820 | 3.165 | 0.955 | 1.997 | 8.077 | 1.807 | 7.038 | |
index_IPE | IPE污染行业指数(IPE) | 1, 820 | 7.739 | 0.184 | 7.381 | 8.167 | 0.340 | 2.227 | |
VaR | IPE指数风险-VaR | 1, 820 | 2.203 | 0.620 | 1.395 | 5.691 | 1.908 | 7.858 | |
ES | IPE指数风险-ES | 1, 820 | 2.766 | 0.775 | 1.759 | 7.041 | 1.896 | 7.763 | |
index_ZWR | 重污染行业指数(ZWR) | 1, 820 | 8.011 | 0.341 | 7.412 | 8.589 | 0.275 | 1.471 | |
VaR | ZWR指数风险-VaR | 1, 820 | 2.303 | 0.673 | 1.456 | 5.902 | 2.013 | 8.446 | |
ES | ZWR指数风险-ES | 1, 820 | 2.898 | 0.844 | 1.835 | 7.386 | 2.012 | 8.433 |
注: 上表是本文进行实证分析变量的描述性统计. 被解释变量分别是三个金融子行业(银行、证券和保险行业) 的系统性风险衡量指标∆CoVaR与MES; 解释变量分别是绿色(棕色) 行业指数(Index)和指数风险衡量指标(VaR和ES). 在做描述性统计以及后续回归时为了减少噪音影响, 对行业指数取对数处理. |
表3 气候引发的灾难与银行、证券、保险行业系统性风险 |
面板A | |||||||||||
显著性 | 银行 | 证券 | 保险 | ||||||||
1% | 5% | 10% | 1% | 5% | 10% | 1% | 5% | 10% | |||
0 | 0 | 11.11% | 0 | 3.70% | 11.11% | 0 | 3.70% | 11.11% | |||
0 | 3.70% | 11.11% | 7.40% | 14.81% | 18.52% | 7.40% | 14.81% | 18.52% | |||
3.70% | 11.11% | 11.11% | 11.11% | 22.22% | 29.63% | 11.11% | 22.22% | 29.63% | |||
面板B | |||||||||||
显著性 | 银行 | 证券 | 保险 | ||||||||
1% | 5% | 10% | 1% | 5% | 10% | 1% | 5% | 10% | |||
0 | 0 | 11.11% | 0 | 3.70% | 7.40% | 0.00% | 3.70% | 7.40% | |||
3.70% | 11.11% | 14.81% | 3.70% | 18.52% | 22.22% | 3.70% | 18.52% | 22.22% | |||
7.40% | 11.11% | 18.52% | 7.40% | 22.22% | 22.22% | 7.40% | 22.22% | 22.22% |
注: Wilcoxon符号秩和检验旨在判断相应极端气候事件持续的h天期间(或事件结束后), 我国金融行业系统性风险是否大于事件发生之前h天的系统性风险. t是极端气候事件起始日期, h是其持续时间. 每一行表示每个不同的零假设(H0), 具体假设内容已在第2.2节中描述. 表格中对应的结果表示拒绝零假设数据占总统计数据的百分比, 分别采用10%、5%和1% 的置信水平. |
表4 银行业系统性风险与绿色(棕色) 行业表现之间的关系 |
∆CoVaR | |||||||||||||
绿色资产 | 棕色资产 | ||||||||||||
VaR_EI | ES_EI | Index_EI | VaR_EM | ES_EM | Index_EM | VaR_IPE | ES_IPE | Index_IPE | VaR_ZWR | ES_ZWR | Index_ZWR | ||
0.00 | 0.00 | 0.07 | 0.09* | ||||||||||
0.22*** | 0.18*** | 0.15 | 0.18*** | 0.15*** | 0.60 | 0.31*** | 0.25*** | 0.28*** | 0.22*** | ||||
0.10 | 0.34 | ||||||||||||
1.36*** | 1.09*** | 1.95*** | 2.29*** | ||||||||||
0.02 | 0.01 | 0.52 | 0.72* | ||||||||||
0.12* | 0.11** | 0.87* | 0.09 | 0.08* | 0.53 | 0.06 | 0.06 | 0.63 | 0.08 | 0.08 | 0.14 | ||
4.50** | 4.59** | 4.91** | 2.69 | 2.70 | 2.85* | 0.04 | 0.05 | 1.27 | 0.39 | 0.35 | 2.10 | ||
16.11*** | 19.23*** | 2.30 | 6.24** | 8.19*** | 3.80* | 12.09*** | 12.94*** | 7.56*** | 13.22*** | 14.96*** | 2.40 | ||
MES | |||||||||||||
绿色资产 | 棕色资产 | ||||||||||||
VaR_EI | ES_EI | Index_EI | VaR_EM | ES_EM | Index_EM | VaR_IPE | ES_IPE | Index_IPE | VaR_ZWR | ES_ZWR | Index_ZWR | ||
0.02 | 0.01 | 0.42* | 0.35* | ||||||||||
0.10 | |||||||||||||
0.70*** | 0.58*** | 0.54*** | 0.45*** | 1.82 | 0.96*** | 0.78*** | 0.85*** | 0.68*** | |||||
0.00 | 0.56 | 0.08 | 0.07 | ||||||||||
4.76*** | 4.14*** | 6.84*** | 7.23*** | ||||||||||
0.23 | 0.09 | 4.54* | 3.84* | ||||||||||
1.03*** | 0.89*** | 6.70*** | 0.77** | 0.65** | 3.98 * | 0.75 | 0.65* | 5.7 | 0.86* | 0.73** | |||
7.88*** | 8.03*** | 10.79*** | 4.31** | 4.41** | 5.91** | 1.07 | 1.08 | 3.61* | 0.02 | 0.04 | 0.77 | ||
17*** | 19.61*** | 0.33 | 6.08** | 7.44*** | 1.36 | 8.29*** | 8.63*** | 4.67** | 11.36*** | 12.26*** | 2.27 |
注: 表 4显示了以银行业的 |
表5 证券业系统性风险与绿色(棕色)行业表现之间的关系 |
绿色资产 | 棕色资产 | ||||||||||||
VaR_EI | ES_EI | Index_EI | VaR_EM | ES_EM | Index_EM | VaR_IPE | ES_IPE | Index_IPE | VaR_ZWR | ES_ZWR | Index_ZWR | ||
0.02 | 0.01 | ||||||||||||
0.04 | 0.06 | 0.01 | 0.01 | ||||||||||
0.55*** | 0.44*** | 0.23 | 0.47*** | 0.38*** | 0.23 | 0.67*** | 0.54*** | 0.62*** | 0.50*** | ||||
4.24*** | 2.70*** | 6.47*** | 4.23*** | ||||||||||
1.58*** | 1.71*** | 0.28*** | 0.23*** | 2.05*** | 1.76** | ||||||||
0.04 | 0.01 | 0.07 | 0.04 | 0.02 | 0.02 | ||||||||
0.36 | 0.28 | ||||||||||||
0.14 | 0.10 | 0.21 | 0.16 | 0.02 | 0.40 | 0.31 | 2.50*** | ||||||
3.30* | 3.53* | 3.51* | 5.22** | 5.67** | 4.41** | 2.43 | 1.98 | 1.80 | 6.21** | 5.63** | 1.78 | ||
18.18*** | 17.01*** | 61.05*** | 12.31*** | 12.22*** | 27.32*** | 9.41*** | 8.25*** | 115.8*** | 12.64*** | 11.94*** | 38.08*** | ||
MES | |||||||||||||
绿色资产 | 棕色资产 | ||||||||||||
VaR_EI | ES_EI | Index_EI | VaR_EM | ES_EM | Index_EM | VaR_IPE | ES_IPE | Index_IPE | VaR_ZWR | ES_ZWR | Index_ZWR | ||
0.17*** | 0.13*** | 0.00 | 0.00 | 0.03 | |||||||||
0.02 | 0.02 | 0.18 | 0.19 | 0.15** | 0.12** | 0.36 | |||||||
2.45*** | 1.96*** | 3.37 | 2.04*** | 1.64*** | 2.36 | 2.83*** | 2.27*** | 1.37 | 2.68*** | 2.14*** | 0.29 | ||
17.59*** | 11.72*** | 25.61*** | 15.22*** | ||||||||||
0.04 | 0.09 | 4.50* | 6.39*** | 1.68*** | 1.40*** | 7.03** | 0.29 | 0.26 | 7.10** | ||||
0.16 | 0.07 | 0.29 | 0.21 | 0.04 | 0.07 | 0.09 | 0.07 | ||||||
3.77*** | 3.07*** | 0.13 | 0.12 | 0.64 | |||||||||
0.84 | 0.61 | 0.89 | 0.62 | 8.95* | |||||||||
1.28 | 1.34 | 1.44 | 0.94 | 1.05 | 1.43 | 0.64 | 0.51 | 2.41 | 1.66 | 1.35 | 1.35 | ||
14.89*** | 13.26*** | 86.04*** | 8.53*** | 7.46*** | 37.6*** | 2.57 | 1.75 | 135.1*** | 8.68*** | 7.86*** | 54.85*** |
注: 表 5显示了以证券业的 |
表6 保险业系统性风险与绿色(棕色)行业表现之间的关系 |
绿色资产 | 棕色资产 | ||||||||||||
VaR_EI | ES_EI | Index_EI | VaR_EM | ES_EM | Index_EM | VaR_IPE | ES_IPE | Index_IPE | VaR_ZWR | ES_ZWR | Index_ZWR | ||
0.00 | 0.00 | 0.02 | 0.02 | 0.02* | 0.02* | 0.09 | 0.00 | 0.00 | 0.01 | ||||
0.02 | 0.01 | 0.01 | 0.00 | 0.04 | |||||||||
0.17*** | 0.13*** | 0.14*** | 0.11*** | 0.27*** | 0.22*** | 0.30*** | 0.24*** | ||||||
0.42 | 0.17 | 0.29 | 1.11* | ||||||||||
0.01 | 0.00 | 1.10** | 1.08** | 0.11 | 0.08 | 1.45** | 0.05 | 0.03 | 1.02* | ||||
0.01 | |||||||||||||
0.02 | 0.01 | 0.24 | 0.25 | 0.28* | 0.23* | 1.23 | 0.07 | 0.04 | 0.20 | ||||
0.10 | 0.10 | 0.35 | 0.09 | 0.08 | 1.22 | 0.01 | |||||||
3.49* | 3.51* | 0.56 | 1.11 | 1.13 | 0.01 | 4.78** | 5.16** | 1.53 | 0.55 | 0.63 | 0.14 | ||
0.97 | 1.37 | 2.01 | 0.47 | 0.78 | 0.96 | 1.30 | 1.15 | 6.77*** | 2.31 | 3.07* | 5.67** | ||
MES | |||||||||||||
绿色资产 | 棕色资产 | ||||||||||||
VaR_EI | ES_EI | Index_EI | VaR_EM | ES_EM | Index_EM | VaR_IPE | ES_IPE | Index_IPE | VaR_ZWR | ES_ZWR | Index_ZWR | ||
0.06 | 0.07 | 0.03 | 0.03 | 0.32 | |||||||||
0.01 | 0.19 | 0.33* | |||||||||||
0.58*** | 0.47*** | 0.51*** | 0.40*** | 0.05 | 0.91*** | 0.73*** | 1.03*** | 0.83*** | |||||
1.57 | 0.89 | 0.21 | 3.68 | ||||||||||
0.04 | 0.02 | 3.80** | 3.65** | 0.44* | 0.33 | 4.50** | 0.19 | 0.12 | 3.35 | ||||
0.03 | 0.08 | 0.01 | 0.03 | ||||||||||
0.81 | 0.94 | 0.48 | 0.42 | 4.85 | |||||||||
0.74 | 0.63 | 0.67 | 0.56 | 0.20 | 0.16 | 5.67 | 0.38 | 0.37 | |||||
1.72 | 1.78 | 0.06 | 0.23 | 0.26 | 0.58 | 5.87** | 6.37** | 2.10 | 0.05 | 0.10 | 1.79 | ||
0.81 | 1.04 | 2.95* | 0.51 | 0.74 | 1.96 | 1.14 | 0.94 | 7.06*** | 1.8 | 2.31 | 7.24*** |
注: 表 6显示了以保险业的 |
陈国进, 陈凌凌, 金昊, 赵向琴, 气候转型风险与宏观经济政策调控[J]. 经济研究, 2023, 58(5): 60- 78.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈建青, 王擎, 许韶辉, 金融行业间的系统性金融风险溢出效应研究[J]. 数量经济技术经济研究, 2015, 32(9): 89- 100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
丁宇刚, 孙祁祥, 气候风险对中国农业经济发展的影响–––异质性及机制分析[J]. 金融研究, 2022,(9): 111- 131.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
宫晓莉, 熊熊, 张维, 我国金融机构系统性风险度量与外溢效应研究[J]. 管理世界, 2020, 36(8): 65- 83.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
何青, 钱宗鑫, 刘伟, 中国系统性金融风险的度量–––基于实体经济的视角[J]. 金融研究, 2018,(4): 53- 70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
姬强, 赵万里, 张大永, 郭琨, 气候风险感知对金融市场的影响–––基于中国企业层面的微观证据[J]. 计量经济学报, 2022, 2(3): 666- 680.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李政, 涂晓枫, 卜林, 金融机构系统性风险: 重要性与脆弱性[J]. 财经研究, 2019, 45(2): 100- 112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘波, 王修华, 李明贤, 气候变化冲击下的涉农信用风险–––基于2010-2019年256家农村金融机构的实证研究[J]. 金融研究, 2021,(12): 96- 115.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
马骏, 程琳, 沙孟维, 转型金融呼唤标准体系、激励措施和技术准备[J]. 清华金融评论, 2023,(9): 71- 74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
马骏, 金融机构环境风险分析的意义、方法和推广[J]. 清华金融评论, 2020,(9): 16- 20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
潘敏, 刘红艳, 程子帅, 极端气候对商业银行风险承担的影响–––来自中国地方性商业银行的经验证据[J]. 金融研究, 2022,(10): 39- 57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王馨, 王营, 绿色信贷政策增进绿色创新研究[J]. 管理世界, 2021, 37(6): 173- 188.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王信, 姜晶晶, 气候相关金融风险: 中外保险业的差异及应对[J]. 国际经济评论, 2021,(5): 22- 23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨子晖, 李东承, 系统性风险指标是否具有前瞻性的预测能力?[J]. 经济学(季刊), 2021, 21(2): 617- 644.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨子晖, 陈雨恬, 谢锐楷, 我国金融机构系统性金融风险度量与跨部门风险溢出效应研究[J]. 金融研究, 2018,(10): 19- 37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨子晖, 李东承, 陈雨恬, 金融市场的"绿天鹅"风险研究–––基于物理风险与转型风险的双重视角[J]. 管理世界, 2024, 40(2): 47- 67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
余婷, 段显明, 葛察忠, 李晓亮, 中国绿色股票指数的现状分析与发展建议[J]. 环境保护, 2018, 46(18): 42- 46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张大永, 张跃军, 王玉东, 王群伟, 姬强, 气候金融的学科内涵、中国实践与热点前沿研究[J]. 管理科学学报, 2023, 26(8): 1- 15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张琦, 郑瑶, 孔东民, 地区环境治理压力、高管经历与企业环保投资–––一项基于《环境空气质量标准(2012)》的准自然实验[J]. 经济研究, 2019, 54(6): 183- 198.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张韵晗, 郭琨, 姬强, 赵万里, 气候冲击对中国大类资产收益的信息溢出研究[J]. 计量经济学报, 2023, 3(2): 426- 442.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Adrian T, Brunnermeier M K, (2011). CoVaR (No. w17454)[R]. National Bureau of Economic Research.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Bolton P, Despres M, Da Silva L A P, Samama F, Svartzman R, (2020). The Green Swan[R]. Bank for International Settlements.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Douris J, Kim G, (2021). The Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019)[R]. World Meteorological Organization.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Financial Stability Board, (2020). The Implications of Climate Change for Financial Stability[R]. Report.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
NGFS, (2020a). Overview of Environmental Risk Analysis by Financial Institutions[R]. First Comprehensive Report.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
NGFS, (2020b). Case Studies of Environmental Risk Analysis Methodologies[R]. Technical Supplement.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Shin Y, Yu B, Greenwood-Nimmo M, (2014). Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework[M]// Festschrift in Honor of Peter Schmidt. New York: Springer, 2014: 281–314.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |