
新冠疫情冲击下中国有色金属期货市场效率分析
Analysis of the Effciency of China's Nonferrous Metals Futures Market under the Impact of the COVID-19
由于全球新冠疫情的暴发, 各国经济和金融市场受到了严重的冲击, 而中国有色金属期货市场也不例外. 因此, 对于新冠疫情如何影响中国有色金属期货市场的研究, 在我国期货市场的发展进程中具有重要的理论和实践意义. 本文采用了MF-DFA和多重分形谱分析方法, 通过对沪铜、沪铝、沪锌、沪铅四种有色金属期货价格数据进行分析, 探讨了新冠疫情对这些市场效率的影响, 并进一步分析了市场风险的变化情况. 实证结果显示, 除了沪铜期货外, 沪铝、沪锌、沪铅三种有色金属期货受到新冠疫情冲击后, 市场效率下降、市场风险加大. 具体而言, 沪铝期货市场效率下降最为明显, 而沪铅期货价格波动最为剧烈, 市场风险增加最多. 此外, 本文对新冠疫情前后原始时间序列进行重排和替代处理后发现, 在疫情前, 时间序列的长程相关性对四种金属期货市场低效性的贡献程度更大; 而在疫情之后, 时间序列的厚尾分布对沪铜期货市场出现低效性的作用程度更大. 而对其他三种有色金属期货来说, 时间序列的长程相关性依然是其造成市场低效性更加重要的原因. 以上结论阐述了较大冲击因素对市场造成的影响特征, 有助于我国有色金属期货市场的成熟稳定发展.
Due to the outbreak of the global COVID-19 epidemic, the economies and financial markets of various countries have been severely impacted when the nonferrous metals futures market of China is also influenced. Therefore, the study of how the new coronavirus epidemic affects the nonferrous metals futures market of China has an important theoretical and practical value in the development of our country's futures market. This article uses MF-DFA and multifractal spectrum analysis methods to analyze the price datas of four non-ferrous metal futures: Shanghai copper, Shanghai aluminum, Shanghai zinc, and Shanghai lead, and explores the impact of the COVID-19 epidemic on the effciency of these markets, and further analyzes changes in market risk. Empirical results show that except Shanghai copper futures, the market effciency of Shanghai aluminum, Shanghai zinc, and Shanghai lead non-ferrous metal futures had declined and market risks had increased after being affected by the COVID-19 epidemic. Specifically, the effciency of the Shanghai aluminum futures market had dropped most significantly, while the price of Shanghai lead futures had been the most volatile, and market risks had increased the most. In addition, this article rearranges and substitutes the original time series before and after the COVID-19 epidemic and finds that the long-term correlation of the time series contributed more to the ineffciency of the four metal futures markets before the epidemic. While after the epidemic, time series the thick-tailed distribution of the series plays a greater role in the ineffciency of the Shanghai copper futures market. For the other three nonferrous metal futures, the long-term correlation of time series is still a more crucial reason for market ineffciency. The above conclusion illustrates the characteristics of the impact of major impact factors on the market. They also may be instrumental for the nonferrous metals futures market of our country turning to more mature and stable.
新冠疫情 / MF-DFA / 有色金属期货市场 / 多重分形 / 市场效率 {{custom_keyword}} /
COVID-19 / MF-DFA / nonferrous metals futures market / multifractal / market effciency {{custom_keyword}} /
表1 上海期货交易所四种有色金属期货的基本统计量 |
AL03.SHF | CU03.SHF | ZN03.SHF | PB03.SHF | ||||||||
疫情前 | 疫情后 | 疫情前 | 疫情后 | 疫情前 | 疫情后 | 疫情前 | 疫情后 | ||||
原始样本数 | 1, 479 | 816 | 1, 479 | 816 | 1, 479 | 816 | 1, 479 | 816 | |||
均值 | −0.000004 | 0.000342 | −0.000060 | 0.000475 | 0.000113 | 0.000152 | 0.000019 | 0.000074 | |||
标准差 | 0.008660 | 0.013537 | 0.010639 | 0.012548 | 0.012773 | 0.014236 | 0.011493 | 0.009859 | |||
方差 | 0.000075 | 0.000183 | 0.000113 | 0.000158 | 0.000163 | 0.000203 | 0.000132 | 0.000097 | |||
最小值 | −0.044736 | −0.063094 | −0.057800 | −0.064830 | −0.070530 | −0.075940 | −0.077700 | −0.051010 | |||
最大值 | 0.047516 | 0.048877 | 0.062914 | 0.050194 | 0.057605 | 0.073608 | 0.068772 | 0.037728 | |||
偏度 | 0.121677 | −0.729612 | 0.148611 | −0.214120 | −0.100820 | −0.163230 | −0.087000 | −0.086090 | |||
峰度 | 6.038721 | 5.853213 | 7.321701 | 5.754673 | 5.325215 | 6.319354 | 7.213464 | 4.942098 |
表2 疫情前后上海期货交易所四种有色金属期货广义Hurst指数 |
q | AL03.SHF | CU03.SHF | ZN03.SHF | PB03.SHF | |||||||
疫情前 | 疫情后 | 疫情前 | 疫情后 | 疫情前 | 疫情后 | 疫情前 | 疫情后 | ||||
−5 | 0.5929 | 1.1465 | 0.5904 | 0.4031 | 0.3883 | 0.4317 | 0.5271 | 0.7747 | |||
−4 | 0.5027 | 1.0323 | 0.5233 | 0.3755 | 0.3646 | 0.3908 | 0.4926 | 0.6869 | |||
−3 | 0.4055 | 0.8453 | 0.4418 | 0.3415 | 0.3321 | 0.3466 | 0.4436 | 0.5681 | |||
−2 | 0.3171 | 0.5682 | 0.3573 | 0.3013 | 0.2910 | 0.3007 | 0.3786 | 0.4330 | |||
−1 | 0.2468 | 0.3391 | 0.2827 | 0.2566 | 0.2449 | 0.2548 | 0.3041 | 0.3154 | |||
0 | 0.1927 | 0.2362 | 0.2233 | 0.2103 | 0.1984 | 0.2112 | 0.2319 | 0.2299 | |||
1 | 0.1489 | 0.1805 | 0.1766 | 0.1661 | 0.1545 | 0.1702 | 0.1701 | 0.1680 | |||
2 | 0.1110 | 0.1381 | 0.1365 | 0.1267 | 0.1137 | 0.1283 | 0.1203 | 0.1212 | |||
3 | 0.0776 | 0.0997 | 0.0968 | 0.0926 | 0.0745 | 0.0803 | 0.0818 | 0.0852 | |||
4 | 0.0483 | 0.0638 | 0.0545 | 0.0631 | 0.0364 | 0.0256 | 0.0535 | 0.0576 | |||
5 | 0.0232 | 0.0312 | 0.0125 | 0.0377 | 0.0008 | −0.0290 | 0.0338 | 0.0361 | |||
0.5697 | 1.1153 | 0.5779 | 0.3654 | 0.3875 | 0.4606 | 0.4932 | 0.7386 |
表3 疫情前后上海期货交易所四种有色金属期货的多重分形谱分析结果 |
AL03.SHF | CU03.SHF | ZN03.SHF | PB03.SHF | ||||||||
疫情前 | 疫情后 | 疫情前 | 疫情后 | 疫情前 | 疫情后 | 疫情前 | 疫情后 | ||||
−0.0772 | −0.0992 | −0.1554 | −0.0638 | −0.1418 | −0.2471 | −0.0447 | −0.0499 | ||||
0.9537 | 1.6033 | 0.8591 | 0.5134 | 0.4831 | 0.5952 | 0.6648 | 1.1259 | ||||
1.0309 | 1.7024 | 1.0145 | 0.5772 | 0.6249 | 0.8424 | 0.7095 | 1.1758 | ||||
0.4981 | 0.3482 | 0.1602 | 0.4925 | 0.2873 | −0.0909 | 0.6075 | 0.5701 | ||||
−0.8037 | −1.2840 | −0.3431 | 0.4484 | 0.5259 | 0.1821 | 0.3112 | −0.7561 | ||||
1.3019 | 1.6322 | 0.5033 | 0.0441 | −0.2386 | −0.2731 | 0.2962 | 1.3262 |
表4 疫情前四种有色金属期货原始、重排、替代序列广义Hurst指数 |
q | AL03.SHF(疫情前) | CU03.SHF(疫情前) | |||||
原始 | 重排 | 替代 | 原始 | 重排 | 替代 | ||
−5 | 0.5929 | 0.9538 | 0.6699 | 0.5904 | 1.1497 | 0.6465 | |
−4 | 0.5027 | 0.8846 | 0.5574 | 0.5233 | 1.0326 | 0.5405 | |
−3 | 0.4055 | 0.8087 | 0.4404 | 0.4418 | 0.8915 | 0.4304 | |
−2 | 0.3171 | 0.7376 | 0.3374 | 0.3573 | 0.7620 | 0.3316 | |
−1 | 0.2468 | 0.6802 | 0.2571 | 0.2827 | 0.6746 | 0.2535 | |
0 | 0.1927 | 0.6375 | 0.1957 | 0.2233 | 0.6183 | 0.1947 | |
1 | 0.1489 | 0.6072 | 0.1473 | 0.1766 | 0.5754 | 0.1496 | |
2 | 0.1110 | 0.5862 | 0.1077 | 0.1365 | 0.5374 | 0.1134 | |
3 | 0.0776 | 0.5725 | 0.0744 | 0.0968 | 0.5008 | 0.0831 | |
4 | 0.0483 | 0.5642 | 0.0454 | 0.0545 | 0.4650 | 0.0569 | |
5 | 0.0232 | 0.5595 | 0.0195 | 0.0125 | 0.4310 | 0.0338 | |
0.5697 | 0.3943 | 0.6504 | 0.5779 | 0.7187 | 0.6126 | ||
q | ZN03.SHF(疫情前) | PB03.SHF(疫情前) | |||||
原始 | 重排 | 替代 | 原始 | 重排 | 替代 | ||
−5 | 0.3883 | 1.2237 | 0.5137 | 0.5271 | 1.4014 | 0.7066 | |
−4 | 0.3646 | 1.0974 | 0.4506 | 0.4926 | 1.2795 | 0.5982 | |
−3 | 0.3321 | 0.9451 | 0.3817 | 0.4436 | 1.1022 | 0.4777 | |
−2 | 0.2910 | 0.7982 | 0.3133 | 0.3786 | 0.8949 | 0.3612 | |
−1 | 0.2449 | 0.6908 | 0.2510 | 0.3041 | 0.7411 | 0.2649 | |
0 | 0.1984 | 0.6213 | 0.1975 | 0.2319 | 0.6519 | 0.1935 | |
1 | 0.1545 | 0.5754 | 0.1522 | 0.1701 | 0.5928 | 0.1414 | |
2 | 0.1137 | 0.5435 | 0.1140 | 0.1203 | 0.5474 | 0.1022 | |
3 | 0.0745 | 0.5195 | 0.0814 | 0.0818 | 0.5098 | 0.0711 | |
4 | 0.0364 | 0.5002 | 0.0533 | 0.0535 | 0.4769 | 0.0458 | |
5 | 0.0008 | 0.4832 | 0.0290 | 0.0338 | 0.4470 | 0.0246 | |
0.3875 | 0.7404 | 0.4847 | 0.4932 | 0.9544 | 0.6820 |
表5 疫情后四种有色金属期货原始、重排、替代序列广义Hurst指数 |
q | AL03.SHF(疫情后) | CU03.SHF(疫情后) | |||||
原始 | 重排 | 替代 | 原始 | 重排 | 替代 | ||
−5 | 1.1465 | 0.8429 | 0.4701 | 0.4031 | 0.9775 | 0.6849 | |
−4 | 1.0323 | 0.8009 | 0.4159 | 0.3755 | 0.9157 | 0.5889 | |
−3 | 0.8453 | 0.7549 | 0.3591 | 0.3415 | 0.8356 | 0.4755 | |
−2 | 0.5682 | 0.7077 | 0.3032 | 0.3013 | 0.7460 | 0.3627 | |
−1 | 0.3391 | 0.6627 | 0.2511 | 0.2566 | 0.6667 | 0.2708 | |
0 | 0.2362 | 0.6234 | 0.2040 | 0.2103 | 0.6081 | 0.2025 | |
1 | 0.1805 | 0.5918 | 0.1620 | 0.1661 | 0.5645 | 0.1504 | |
2 | 0.1381 | 0.5676 | 0.1246 | 0.1267 | 0.5283 | 0.1081 | |
3 | 0.0997 | 0.5484 | 0.0913 | 0.0926 | 0.4965 | 0.0719 | |
4 | 0.0638 | 0.5316 | 0.0615 | 0.0631 | 0.4685 | 0.0400 | |
5 | 0.0312 | 0.5155 | 0.0352 | 0.0377 | 0.4442 | 0.0114 | |
1.1153 | 0.3274 | 0.4349 | 0.3654 | 0.5333 | 0.6735 | ||
0.4317 | 1.2481 | 0.5739 | 0.7747 | 1.1373 | 0.7613 | ||
0.3908 | 1.1354 | 0.4971 | 0.6869 | 1.0637 | 0.6314 | ||
0.3466 | 0.9949 | 0.4134 | 0.5681 | 0.9735 | 0.4896 | ||
0.3007 | 0.8490 | 0.3326 | 0.4330 | 0.8750 | 0.3596 | ||
0.2548 | 0.7334 | 0.2621 | 0.3154 | 0.7844 | 0.2594 | ||
0 | 0.2112 | 0.6555 | 0.2038 | 0.2299 | 0.7151 | 0.1879 | |
1 | 0.1702 | 0.6029 | 0.1561 | 0.1680 | 0.6706 | 0.1354 | |
2 | 0.1283 | 0.5662 | 0.1167 | 0.1212 | 0.6470 | 0.0947 | |
3 | 0.0803 | 0.5409 | 0.0836 | 0.0852 | 0.6386 | 0.0617 | |
4 | 0.0256 | 0.5239 | 0.0554 | 0.0576 | 0.6402 | 0.0344 | |
5 | −0.0290 | 0.5120 | 0.0308 | 0.0361 | 0.6466 | 0.0116 | |
0.4606 | 0.7361 | 0.5431 | 0.7386 | 0.4907 | 0.7498 |
表6 疫情前四种有色金属期货原始、重排、替代的多重分形谱分析结果 |
AL03.SHF(疫情前) | CU03.SHF(疫情前) | ||||||
原始 | 重排 | 替代 | 原始 | 重排 | 替代 | ||
−0.0772 | 0.5392 | −0.0844 | −0.1554 | 0.2947 | −0.0584 | ||
0.9537 | 1.2309 | 1.1200 | 0.8591 | 1.6179 | 1.0703 | ||
1.0309 | 0.6917 | 1.2043 | 1.0145 | 1.3232 | 1.1287 | ||
ZN03.SHF(疫情前) | PB03.SHF(疫情前) | ||||||
原始 | 重排 | 替代 | 原始 | 重排 | 替代 | ||
−0.1418 | 0.4155 | −0.0680 | −0.0447 | 0.3276 | −0.0600 | ||
0.4831 | 1.7287 | 0.7660 | 0.6648 | 1.8889 | 1.1404 | ||
0.6249 | 1.3132 | 0.8340 | 0.7095 | 1.5613 | 1.2003 |
表7 疫情后四种有色金属期货原始、重排、替代的多重分形谱分析结果 |
AL03.SHF(疫情后) | CU03.SHF(疫情后) | ||||||
原始 | 重排 | 替代 | 原始 | 重排 | 替代 | ||
−0.0992 | 0.4510 | −0.0702 | −0.0638 | 0.3470 | −0.1029 | ||
1.6033 | 1.0109 | 0.6867 | 0.5134 | 1.2246 | 1.0690 | ||
1.7024 | 0.5598 | 0.7569 | 0.5772 | 0.8776 | 1.1719 | ||
ZN03.SHF(疫情后) | PB03.SHF(疫情后) | ||||||
原始 | 重排 | 替代 | 原始 | 重排 | 替代 | ||
−0.2471 | 0.4646 | −0.0675 | −0.0499 | 0.6219 | −0.0797 | ||
0.5952 | 1.6992 | 0.8812 | 1.1259 | 1.4316 | 1.2809 | ||
0.8424 | 1.2345 | 0.9487 | 1.1758 | 0.8098 | 1.3606 |
方意, 贾妍妍, 新冠肺炎疫情冲击下全球外汇市场风险传染与中国金融风险防控[J]. 当代经济科学, 2021, 43 (2): 1- 15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘璐, 陈思, 费锡江, 重大突发公共事件下投资者情绪和货币政策对中国农产品价格的传导效应——以新冠肺炎疫情为例[J]. 当代经济科学, 2023, 45 (1): 89- 102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李绍芳, 李方圆, 刘晓星, 新冠肺炎疫情冲击下全球金融市场系统性风险跨市场传染研究——基于G20国家的经验证据[J]. 金融评论, 2022, 14 (3): 1- 38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
沈悦, 李朝前, 新冠肺炎疫情对中国系统性金融风险的影响[J]. 统计与信息论坛, 2022, 37 (4): 59- 72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
徐楠, 李嵩松, 惠晓峰, 张英龙, (2023). 新冠肺炎疫情影响下我国股票市场的分形特征和风险度量研究[J/OL]. 运筹与管理: 1–19. [2023-07-20].
Xu N, Li S S, Hui X F, Zhang Y L, (2023). Analysis of the Multifractal Characteristics and Risk Measuresof China's Stock Market Affected by COVlD-19[J/OL]. Operations Research and Management Science, 1–19. [2023-07-20].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |