
Khmaladze变换及其在检验理论中的应用研究综述
Review of Khmaladze Transformations with Their Applications on Testing Theorem
在探讨复合假设检验问题时, 基于经验过程的检验统计量往往缺乏分布无关性. Khmaladze变换, 包括鞅变换和酉变换, 为克服这一难题提供了有效的解决方案. 首先, 20世纪80年代初期, Khmaladze提出了鞅变换, 专门用于处理连续分布函数的检验问题. 随着时间的推移, 鞅变换的理论基础得到了不断的深化和完善; 其应用范围也日益扩大, 涵盖了分布函数与回归模型等众多检验问题. 进入21世纪, Khmaladze在2013年和2016年进一步提出了酉变换. 其不仅适用于离散分布, 也适用于连续分布, 为统计学领域带来了新的视角和工具. 然而, 尽管Khmaladze变换在国际上已有一定的研究基础, 但在中国, 这两种变换方法的研究和应用尚未得到充分的认识. 本文旨在对Khmaladze变换的起源、理论原理、发展过程以及当前的应用状况进行梳理, 并对其进一步拓展和应用前景提出一些思考.
When addressing composite hypothesis testing, empirical process-based statistical tests often lack distribution-free. The Khmaladze transformation, including both the martingale and unitary transformations, provides an effective solution to this challenge. Initially, in the early 1980s, Khmaladze introduced the martingale transformation, specifically designed for testing problems involving continuous distribution functions. Over time, the theoretical foundation of the martingale transformation has been continuously deepened and refined; and its application scope has broadened, covering a wide range of testing problems, including distribution functions and regression models. Entering the 21st century, Khmaladze further proposed the unitary transformation in 2013 and 2016, which is applicable not only to discrete distributions but also to continuous distributions, bringing new perspectives and tools to the field of statistics. However, despite a certain research foundation for the Khmaladze transformation internationally, these two transformation methods have not yet been fully recognized in China. This article aims to sort out the origin, theoretical principles, development process, and current application status of the Khmaladze transformation and to propose some thoughts on its further development and application prospects.
经验过程 / 检验 / 分布无关性 / 鞅变换 / 酉变换 {{custom_keyword}} /
empirical process / test / distribution-free / martingale transformation / unitary transformation {{custom_keyword}} /
陈强, 陈娟, 陈道轮, 美元指数的动态演化机理——基于扩散模型的实证分析[J]. 国际金融研究, 2016, 4, 37- 48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈强, 龚玉婷, 基于近邻截断的跳跃扩散过程波动函数的设定检验[J]. 中国管理科学, 2020, 28(7): 45- 56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈强, 刘伟强, 胡美娣, 微观噪音下扩散模型波动函数的非参数设定检验及其应用[J]. 应用数学学报, 2024, 47(3): 443- 463.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈强, 郑旭, 许秀, 基于鞅转化的利率模型漂移函数的设定检验[J]. 管理科学学报, 2014, 17(11): 43- 56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
夏强, 梁茹冰, 李高荣, 参数单指标分位数自回归模型的诊断检验[J]. 中国科学: 数学, 2019, 49(6): 879- 898.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Bancolita J, (2019). Numerical Investigation of Khmaladze Projection Approach in Regression[R]. Research Report, SMS VUW.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Chen Q, Liu W, Zhang Z, (2024). Specification Tests for The Volatility Function in Diffusion Model Under Microstructure Noise[R]. SUFE Working Paper.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Dette H, Hetzler B, (2018). A Martingale-transform Goodness-of-fit Test for the Form of the Conditional Variance[R]. Technical Reports.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Durbin J, (1973b). Distribution Theory for Tests Based on the Sample Distribution Function[C]// Philadelphia, Society for Industrial and Applied Mathematics, (Regional Conference Series in Applied Mathematics).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Einmahl J, Khmaladze E V, (2001). The Two-sample Problem in Rm and Measure-valued Martingales[Z]. IMS Lecture Notes Monograph, 36: 434–463.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Kennedy A P, (2018). Analysis and Prediction of High Frequency Foreign Exchange Data[D]. Master's Thesis School of Mathematics and Statistics, Victoria University, Wellington, New Zealand.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Kim J, (2016). Goodness-of-Fit Test: Khmaladze Transformation vs Empirical Likelihood[R]. Unpublished Manuscript.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Kim J, (2024). A Goodness of Fit Test for Non-Gaussian Distributions With Unknown Location and Scale Parameters[R]. Unpublished Manuscript.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Koul H L, (2006). Model Diagnostics Via Martingale Transforms: A Brief Review[M]// Fan J, Koul H L. Frontiers in Statistics: 183–206.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Mora J, Neumeyer N, (2005). The Two-sample Problem With Regression Errors: An Empirical Process Approach[R]. Working Papers. Serie AD.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Nguyen C, (2010). Time-changed Residual Based Tests for Asset Pricing Models in Continuous Time[Z]. Unpublished Manuscript, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Nguyen T T M, (2017b). Asymptotic Methods of Testing Statistical Hypotheses[D]. School of Mathematics and Statistics, Victoria University, Wellington, New Zealand.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Nguyen T T M, (2018). Asymptotically Distribution-free Goodness-of-fit Tests for Testing Independence in Contingency Tables of Large Dimensions[M]// La Rocca M, Liseo B, Salmaso L. Nonparametric Statistics. ISNPS.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Roberts L A, (2021). On the Derivation of the Khmaladze Transforms[R]. Unpublished Manuscript.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Sklar A, (1959). Fonctions De Répartition À n Dimensions Et Leurs Marges[C]// Annales De l'ISUP. 8(3): 229–231.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Tsigroshvili Z, (1998). Some Notes on Goodness-of-fit Tests and Innovation Martingales[C]// Proceedings of A. Razmadze Mathematical Institute, 117: 89–102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |