
老年预期寿命与健康预期寿命占比对收入不平等影响的实证研究
An Empirical Study on the Impact of Life Expectancy and Proportion of Health Life Expectancy on Income Inequality
老年预期寿命延长且带病生存问题日益凸显,为实现共同富裕需要厘清其对收入不平等的影响.文章利用2000--2015年114个国家的跨国面板数据实证分析老年预期寿命和健康预期寿命占比对收入不平等的影响.结果表明,老年预期寿命和健康预期寿命占比会通过储蓄率、劳动供给和技术进步影响收入不平等,进而表现为收入不平等随老年预期寿命延长呈先降后增的U型关系,以及老年健康预期寿命占比提升能够显著地降低收入不平等.就中国而言,老年预期寿命在2000--2015年间降低不平等0.986~1.490个点,而在此期间下降的老年健康预期寿命占比提高了不平等0.223~0.458个点.当前中国仍处于预期寿命延长促进共同富裕的时间窗口期,要提前预防未来老人预期寿命持续延长带来的不平等问题;提高老年预期寿命的同时要更加重视提高老年健康预期寿命占比,提升老年人的生命质量,防止出现贫病交加境况,实现全民意义上的共同富裕.
Longevity with age-related chronic deceases is becoming increasingly conspicuous, and it is important to clarify its impact on income inequality to realize common prosperity. This paper uses cross-country panel data of 114 countries from 2000 to 2015 to empirically analyze the impact of life expectancy and proportion of health life expectancy on income inequality. The results show that the extension of the life expectancy and health life expectancy of the elderly will affect income inequality through saving rate, labor force supply and total factor productivity, which shows a U-shaped relationship between income inequality and life expectancy and the improvement of the proportion of health life expectancy of the elderly can significantly reduce income inequality. Taking China as an example, the extension of life expectancy in China can reduce inequality by 0.986 to 1.490 points between 2000 and 2015, while the declining proportion of health life expectancy has increased inequality by 0.223 to 0.458 points at the same period. The conclusions enlighten that China is still in the window period for longevity to promote common prosperity, and it is important to take precautions in advance for the inequality caused by longevity in the long run. To promote life expectancy of the elderly and realize common prosperity, policy makers should pay more attention to healthy survival and survival quality, preventing the emergence of poverty and disease.
老年健康 / 收入不平等 / 预期寿命 / 健康预期寿命占比 {{custom_keyword}} /
elderly health / income inequality / life expectancy / proportion of health life expectancy {{custom_keyword}} /
表1 变量统计性描述 |
变量名称 | 单位 | 均值 | 标准差 | 最小值 | 最大值 |
五年平均税前基尼系数m5gini_mkt | 45.607 | 5.979 | 28.020 | 68.280 | |
五年平均税后基尼系数m5gini_disp | 37.529 | 7.678 | 22.660 | 58.420 | |
基尼系数gini_mkt | 45.749 | 6.006 | 28.000 | 68.500 | |
60岁时预期寿命 | 岁 | 19.304 | 3.125 | 10.700 | 26.300 |
健康预期寿命占比 | % | 76.250 | 2.722 | 67.347 | 83.534 |
储蓄率 | % | 20.632 | 9.572 | -18.974 | 85.793 |
总工作时长 | 百亿小时 | 5.796 | 19.076 | 0.018 | 183.343 |
全要素生产率 | % | 0.676 | 0.254 | 0.060 | 1.621 |
人力资本指数 | 2.536 | 0.721 | 1.073 | 3.742 | |
实际人均GDP | 美元 | 15210.110 | 15977.420 | 522.252 | 96242.850 |
政府最终消费支出占GDP比重 | % | 22.520 | 6.072 | 4.771 | 44.226 |
贸易开放度 | % | 84.128 | 52.624 | 19.577 | 403.765 |
外商直接投资占GDP比重 | % | 5.848 | 15.949 | -5.264 | 260.597 |
城镇化率 | % | 57.772 | 21.936 | 8.251 | 100.000 |
通货膨胀率(消费价格) | % | 6.344 | 10.414 | -4.295 | 127.768 |
表2 固定效应面板数据模型回归结果 |
被解释变量: 基尼系数m5_mkt | (1) | (2) | |||
回归系数 | 置信区间 | 回归系数 | 置信区间 | ||
60岁时预期寿命 | -2.167*** | [-3.294, -1.040] | -3.327*** | [-5.272, -1.382] | |
(0.573) | (0.988) | ||||
60岁时预期寿命的平方 | 0.056*** | [0.028, 0.085] | 0.067*** | [0.025, 0.108] | |
(0.015) | (0.021) | ||||
健康预期寿命占比 | -0.402** | [-0.740, -0.065] | -0.499** | [-0.929, -0.069] | |
(0.172) | (0.219) | ||||
控制变量 | 控制 | ||||
调整R2 | 0.930 | 0.933 | |||
BP-LM检验 | 435.200 | ||||
< 0.000 > | |||||
Hausman检验 | 22.590 | ||||
< 0.031 > |
注: 控制变量包括人力资本指数、实际人均GDP、政府最终消费支出占GDP比重、贸易开放度、外商直接投资占GDP比重、城镇化率、通货膨胀率及时间虚拟变量, 按样本量是否一致分别对仅包括上述控制变量模型回归的拟合优度分别为0.930和0.866;小括号()内为稳健标准误; ***、**与*分别表示通过1%、5% 与10% 的显著性水平检验; < >内为p值计算结果; 中括号[ ] 内为95%置信区间; 后续表格不再赘述. |
表3 稳健性回归结果 |
样本剔除低收入国家(3) | 样本剔除"阿拉伯之春"国家(4) | ||||
回归系数 | 置信区间 | 回归系数 | 置信区间 | ||
60岁时预期寿命 | -3.554*** (1.302) | [-6.124, -0.984] | -3.657*** (1.063) | [-5.749, -1.565] | |
60岁时预期寿命的平方 | 0.079*** (0.028) | [0.025, 0.134] | 0.071*** (0.022) | [0.029, 0.114] | |
健康预期寿命占比 | -0.504** (0.253) | [-1.003, -0.005] | -0.535** (0.227) | [-0.981, -0.088] | |
调整R2 | 0.941 | 0.931 | |||
样本剔除基尼系数异常值(5) | 上述三类样本全部剔除(6) | ||||
回归系数 | 置信区间 | 回归系数 | 置信区间 | ||
60岁时预期寿命 | -3.411*** (0.987) | [-5.353, -1.469] | -3.932*** (1.297) | [-6.492, -1.371] | |
60岁时预期寿命的平方 | 0.068*** (0.021) | [0.027, 0.110] | 0.090*** (0.028) | [0.035, 0.144] | |
健康寿命占比 | -0.630*** (0.207) | [-1.037, -0.222] | -0.780*** (0.205) | [-1.185, -0.376] | |
调整R2 | 0.925 | ||||
基尼系数替换为m5gini_disp(7) | 基尼系数替换为gini_mkt(8) | ||||
回归系数 | 置信区间 | 回归系数 | 置信区间 | ||
60岁时预期寿命 | -2.570*** (0.992) | [-4.522, -0.617] | -3.811*** (1.092) | [-5.962, -1.661] | |
60岁时预期寿命的平方 | 0.050** (0.021) | [0.009, 0.091] | 0.077*** (0.023) | [0.032, 0.112] | |
健康预期寿命占比 | -0.360* (0.209) | [-0.772, -0.052] | -0.632*** (0.233) | [-1.091, -0.174] | |
调整R2 | 0.967 | 0.926 | |||
动态面板数据模型(9) | 交互效应面板数据模型(10) | ||||
回归系数 | 置信区间 | 回归系数 | 置信区间 | ||
60岁时预期寿命 | -3.783*** (0.941) | [-5.636, -1.930] | -4.812*** (1.146) | [-7.069, -2.556] | |
60岁时预期寿命的平方 | 0.074*** (0.021) | [0.033, 0.116] | 0.100*** (0.026) | [0.049, 0.151] | |
健康预期寿命占比 | -0.735*** (0.203) | [-1.135, -0.335] | -0.737*** (0.199) | [-1.129, -0.345] | |
基尼系数滞后项 | 0.541*** (0.085) | [0.375, 0.707] | |||
调整R2 | 0.938 |
表4 异质性回归结果 |
不同收入水平(11) | 不同收入水平+不同人口规模(12) | ||||
回归系数 | 置信区间 | 回归系数 | 置信区间 | ||
60岁时预期寿命 | 0.175 (0.290) | [-0.396, 0.745] | 0.119 (0.315) | [-0.502, 0.739] | |
60岁时预期寿命×Dummy中等收入 | -1.617*** (0.301) | [-2.210, -1.025] | -1.555*** (0.304) | [-2.153, -0.958] | |
60岁时预期寿命×Dummy高收入 | -1.770*** (0.438) | [-2.633, -0.907] | -1.754*** (0.445) | [-2.631, -0.877] | |
60岁时预期寿命×Dummy人口规模以上 | -0.064 (0.200) | [-0.459, -0.330] | |||
健康预期寿命占比 | 0.363 (0.356) | [-0.338, 1.064] | 0.397 (0.358) | [-0.307, 1.101] | |
健康预期寿命占比×Dummy中等收入 | -1.000** (0.419) | [-1.824, -0.176] | -1.139*** (0.409) | [-1.945, -0.334] | |
健康预期寿命占比×Dummy高收入 | -1.141** (0.551) | [-2.227, -0.056] | -1.203** (0.556) | [-2.297, -0.109] | |
健康预期寿命占比×Dummy人口规模以上 | 0.041 (0.050) | [-0.058, 0.139] | |||
调整R2 | 0.941 | 0.932 | |||
25%分位数(13) | 50%分位数(14) | ||||
回归系数 | 置信区间 | 回归系数 | 置信区间 | ||
60岁时预期寿命 | -3.533*** (1.133) | [-5.760, -1.305] | -2.474*** (0.716) | [-3.881, -1.066] | |
60岁时预期寿命的平方 | 0.079*** (0.019) | [0.042, 0.115] | 0.046*** (0.011) | [0.023, 0.068] | |
健康预期寿命占比 | -0.550*** (0.038) | [-0.626, -0.475] | -0.717** (0.309) | [-1.324, -0.111] | |
Pseudo R2 | 0.844 | 0.816 | |||
55%分位数(中国) (15) | 75%分位数(16) | ||||
回归系数 | 置信区间 | 回归系数 | 置信区间 | ||
60岁时预期寿命 | -2.876** (1.198) | [-5.235, -0.517] | -3.595*** (0.988) | [-5.537, -1.653] | |
60岁时预期寿命的平方 | 0.055** (0.028) | [0.000, 0.109] | 0.076*** (0.029) | [0.019, 0.132] | |
健康预期寿命占比 | -0.806*** (0.237) | [-1.273, -0.339] | -0.708*** (0.034) | [-0.775, -0.640] | |
调整R2 | 0.822 | 0.837 |
表5 预期寿命和健康预期寿命占比与收入不平等关系的机制分析结果 |
全样本 | 低发展组 | 高发展组 | 发达组 | ||||||||
储蓄率 | 基尼系数 | 储蓄率 | 基尼系数 | 储蓄率 | 基尼系数 | 储蓄率 | 基尼系数 | ||||
60岁时预期寿命 | -0.019 | -2.439*** | 39.438** | 0.891 | -2.590 | -2.815* | 0.329 | -10.573*** | |||
(1.182) | (0.928) | (15.755) | (7.721) | (3.358) | (1.432) | (1.692) | (2.666) | ||||
60岁时预期寿命的平方 | -0.026 | 0.043** | -1.274** | -0.047 | 0.022 | 0.048 | -0.063 | 0.207*** | |||
(0.034) | (0.019) | (0.479) | (0.243) | (0.072) | (0.030) | (0.062) | (0.052) | ||||
健康预期寿命占比 | -0.806** | -0.518** | 0.177 | -1.570** | -1.596*** | -0.682** | -2.851** | -0.462 | |||
(0.374) | (0.204) | (1.369) | (0.626) | (0.461) | (0.310) | (1.248) | (0.308) | ||||
储蓄率 | -0.011 | -0.215*** | -0.013 | -0.095 | |||||||
(0.031) | (0.063) | (0.058) | (0.060) | ||||||||
调整R2 | 0.869 | 0.940 | 0.927 | 0.945 | 0.896 | 0.938 | 0.865 | 0.948 | |||
全样本 | 低发展组 | 高发展组 | 发达组 | ||||||||
劳动供给 | 基尼系数 | 劳动供给 | 基尼系数 | 劳动供给 | 基尼系数 | 劳动供给 | 基尼系数 | ||||
60岁时预期寿命 | 2.077** | -3.640*** | 14.652 | 3.386 | 2.168** | -3.039** | -0.135 | -11.445*** | |||
(0.929) | (1.056) | (15.038) | (10.567) | (0.957) | (1.413) | (0.214) | (2.442) | ||||
60岁时预期寿命的平方 | -0.058** | 0.076*** | -0.467 | 0.001 | -0.058** | 0.060* | 0.004 | 0.245*** | |||
(0.023) | (0.022) | (0.446) | (0.303) | (0.023) | (0.031) | (0.005) | (0.049) | ||||
健康预期寿命占比 | -0.076 | -0.410** | -2.243 | -0.573 | -0.228 | -0.593** | 0.021 | -0.094 | |||
(0.199) | (0.203) | (1.390) | (0.803) | (0.221) | (0.292) | (0.028) | (0.443) | ||||
劳动供给 | 0.297*** | 0.183 | 0.364** | -6.124* | |||||||
(0.088) | (0.122) | (0.146) | (3.175) | ||||||||
调整R2 | 0.998 | 0.946 | 0.996 | 0.967 | 0.999 | 0.943 | 0.993 | 0.957 | |||
全样本 | 低发展组 | 高发展组 | 发达组 | ||||||||
技术进步 | 基尼系数 | 技术进步 | 基尼系数 | 技术进步 | 基尼系数 | 技术进步 | 基尼系数 | ||||
60岁时预期寿命 | 0.265*** | -1.026 | -0.115 | 9.404 | 0.302*** | -0.902 | 0.221 | -4.532* | |||
(0.043) | (0.899) | (0.315) | (15.962) | (0.058) | (1.336) | (0.134) | (2.353) | ||||
60岁时预期寿命的平方 | -0.007*** | 0.009 | 0.002 | -0.273 | -0.008*** | 0.003 | -0.006** | 0.076 | |||
(0.001) | (0.020) | (0.010) | (0.510) | (0.001) | (0.031) | (0.003) | (0.050) | ||||
健康预期寿命占比 | -0.004 | -0.664*** | 0.017 | -2.139 | -0.014 | -0.846*** | 0.053** | 0.362 | |||
(0.011) | (0.232) | (0.026) | (1.283) | (0.012) | (0.306) | (0.026) | (0.358) | ||||
技术进步 | 0.297*** | 0.183 | 0.364** | -6.124* | |||||||
-6.034*** | 14.399 | -8.151*** | -7.217** | ||||||||
调整R2 | 0.922 | 0.939 | 0.934 | 0.907 | 0.899 | 0.943 | 0.915 | 0.951 |
注: 限于篇幅表中并未给出置信区间, 有需要可联系作者索取. |
表6 平均边际效应及其95%置信区间 |
变量 | 平均边际效应 | 边际效应95% 置信区间 |
60岁时预期寿命 | -3.539 | [-4.522, -2.556] |
60岁时预期寿命的平方 | 0.070 | [0.049, 0.091] |
健康预期寿命占比 | -0.574 | [-0.772, -0.376] |
60岁时预期寿命临界值 | 60岁时预期寿命正边际效应国家 | |
最小临界值 | 24.846岁 | 2005年: 日本 |
2010年: 日本、法国、澳大利亚、瑞士 | ||
2015年: 日本、法国、澳大利亚、瑞士、 | ||
西班牙、加拿大、韩国、新西兰 | ||
平均临界值 | 25.279岁 | 2010年: 日本 |
2015年: 日本、加拿大、法国、澳大利亚 | ||
最大临界值 | 26.082岁 | 2015年: 日本 |
表7 代表性国家老年预期寿命和健康预期寿命占比对不平等的贡献区间 |
国家 | 老年预期寿命贡献 | 老年健康预期寿命占比贡献 | 总贡献 | 平均贡献结构 |
类型Ⅰ | ||||
阿根廷 | [-1.064, -0.769] | [-0.424, -0.207] | [-1.488, -0.976] | 74.229 |
澳大利亚 | [-0.428, -0.259] | [-0.480, -0.234] | [-0.738, -0.661] | 48.234 |
巴西 | [-2.419, -1.669] | [-0.624, -0.304] | [-3.043, -1.973] | 81.395 |
德国 | [-0.654, -0.562] | [-0.148, -0.072] | [-0.802, -0.634] | 84.475 |
法国 | [-0.425, -0.180] | [-0.052, -0.025] | [-0.450, -0.232] | 88.278 |
菲律宾 | [-1.277, -0.806] | [-0.981, -0.478] | [-2.258, -1.283] | 58.712 |
哥伦比亚 | [-1.604, -1.139] | [-0.254, -0.124] | [-1.858, -1.263] | 87.808 |
秘鲁 | [-1.298, -0.922] | [-0.669, -0.326] | [-1.967, -1.248] | 68.887 |
摩洛哥 | [-3.112, -2.056] | [-1.685, -0.820] | [-4.797, -2.876] | 67.228 |
南非 | [-1.273, -0.791] | [-3.460, -1.685] | [-4.733, -2.476] | 28.551 |
泰国 | [-1.062, -0.781] | [-1.431, -0.697] | [-2.493, -1.478] | 46.195 |
土耳其 | [-1.728, -1.192] | [-3.839, -1.870] | [-5.566, -3.062] | 33.688 |
新加坡 | [-1.019, -0.994] | [-1.651, -0.804] | [-2.670, -1.798] | 44.627 |
匈牙利 | [-1.371, -0.909] | [-0.126, -0.061] | [-1.497, -0.970] | 92.386 |
意大利 | [-0.453, -0.379] | [-0.651, -0.317] | [-1.030, -0.770] | 45.647 |
印度 | [-2.074, -1.313] | [-1.092, -0.532] | [-3.165, -1.845] | 67.502 |
印度尼西亚 | [-0.933, -0.581] | [-0.698, -0.340] | [-1.631, -0.921] | 59.252 |
英国 | [-1.016, -0.888] | [-0.150, -0.073] | [-1.166, -0.961] | 89.360 |
马来西亚 | [-2.073, -1.366] | [-0.651, -0.317] | [-2.725, -1.683] | 77.931 |
类型Ⅱ | ||||
埃及 | [0.974, 1.541] | [-2.102, -1.024] | [-0.561, -0.050] | -402.428 |
类型Ⅲ | ||||
爱沙尼亚 | [-2.700, -1.887] | [0.211, 0.433] | [-2.267, -1.675] | 116.488 |
波兰 | [-1.882, -1.315] | [0.086, 0.176] | [-1.706, -1.229] | 108.975 |
韩国 | [-1.488, -1.352] | [0.469, 0.962] | [-0.883, -0.526] | 204.681 |
俄罗斯 | [-3.693, -2.368] | [0.020, 0.041] | [-3.651, -2.348] | 101.033 |
加拿大 | [-0.572, -0.380] | [0.048, 0.099] | [-0.524, -0.282] | 118.882 |
捷克 | [-1.840, -1.292] | [0.244, 0.500] | [-1.340, -1.049] | 131.425 |
美国 | [-0.741, -0.622] | [0.359, 0.736] | [-0.263, -0.005] | 535.324 |
智利 | [-0.741, -0.622] | [0.010, 0.021] | [-0.720, -0.612] | 102.429 |
中国 | [-1.490, -0.986] | [0.223, 0.458] | [-1.031, -0.762] | 138.290 |
类型Ⅳ | ||||
日本 | [-0.173, 0.165] | [0.126, 0.260] | [-0.047, 0.425] | 3.013 |
曹静, 周亚林, 人工智能对经济的影响研究进展[J]. 经济学动态, 2018, (1): 103- 115.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈东升, 长寿时代的理论与对策[J]. 管理世界, 2020, 36 (4): 66- 86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
陈鹤, 1990-2013年中国健康调整预期寿命变化的分解研究[J]. 人口研究, 2020, 44 (1): 26- 38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
程名望, JinYanhong, 盖庆恩, 史清华, 农村减贫: 应该更关注教育还是健康?——基于收入增长和差距缩小双重视角的实证[J]. 经济研究, 2014, 49 (11): 130- 144.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
董志强, 魏下海, 汤灿晴, 人口老龄化是否加剧收入不平等?——基于中国(1996-2009) 的实证研究[J]. 人口研究, 2012, 36 (5): 94- 103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
郭继强, 陆利丽, 姜俪, 老龄化对城镇居民收入不平等的影响[J]. 世界经济, 2014, 37 (3): 129- 144.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
郭未, 张刚, 杨胜慧, 中国老年人口的自理预期寿命变动-二元结构下的城乡差异分析[J]. 人口与发展, 2013, 19 (1): 64- 72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
韩一多, 付文林, 垂直财政不对称与收入不平等-基于转移支付依赖的门槛效应分析[J]. 财贸经济, 2019, 40 (6): 40- 54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
胡广宇, 龚伯雄, 基于国家间联合行动: 健康期望寿命在欧洲的研究与实践[J]. 中国卫生政策研究, 2015, 8 (1): 58- 63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
焦开山, 中国老年人健康预期寿命的不平等问题研究[J]. 社会学研究, 2018, 33 (1): 116- 141.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
蓝嘉俊, 魏下海, 吴超林, 人口老龄化对收入不平等的影响: 拉大还是缩小?——来自跨国数据(1970-2011年)的经验发现[J]. 人口研究, 2014, 38 (5): 87- 106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李猛, 预期寿命延长对储蓄率的影响研究[J]. 中国人口科学, 2020, (1): 29- 40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李琴, 雷晓燕, 赵耀辉, 健康对中国中老年人劳动供给的影响[J]. 经济学(季刊), 2014, 13 (3): 917- 938.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘华, 农村人口老龄化对收入不平等影响的实证研究[J]. 数量经济技术经济研究, 2014, 31 (4): 99- 112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
刘生龙, 胡鞍钢, 郎晓娟, 预期寿命与中国家庭储蓄[J]. 经济研究, 2012, 47 (8): 107- 117.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
齐良书, 李子奈, 与收入相关的健康和医疗服务利用流动性[J]. 经济研究, 2011, 46 (9): 83- 95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
乔晓春, 健康寿命研究的介绍与评述[J]. 人口与发展, 2009, 15 (2): 53- 66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
曲兆鹏, 赵忠, 老龄化对我国农村消费和收入不平等的影响[J]. 经济研究, 2008, 43 (12): 85- 99.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
谭远发, 朱明姣, 周葵, 平均预期寿命、健康工作寿命与延迟退休年龄[J]. 人口学刊, 2016, 38 (1): 26- 34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王林辉, 胡晟明, 董直庆, 人工智能技术会诱致劳动收入不平等吗——模型推演与分类评估[J]. 中国工业经济, 2020, (4): 97- 115.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
汪伟, 刘玉飞, 王文鹏, 长寿的宏观经济效应研究进展[J]. 经济学动态, 2018, (9): 128- 143.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王维国, 刘丰, 胡春龙, 生育政策、人口年龄结构优化与经济增长[J]. 经济研究, 2019, 54 (1): 116- 131.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
解垩, 与收入相关的健康及医疗服务利用不平等研究[J]. 经济研究, 2009, 44 (2): 92- 105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
薛新东, 中国老年人健康不平等的演变趋势及其成因[J]. 人口与发展, 2015, 21 (2): 84- 92.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
姚海祥, 魏嘉辉, 马庆华, 人口预期寿命与退休年龄[J]. 财经研究, 2018, 44 (4): 62- 75.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨晶, 邓悦, 中国农村养老保险制度对农户收入不平等影响研究[J]. 数量经济技术经济研究, 2020, 37 (10): 83- 100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨娟, 赖德胜, 邱牧远, 如何通过教育缓解收入不平等?[J]. 经济研究, 2015, 50 (9): 86- 99.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张芬, 邹薇, 健康、经济增长与收入不平等研究新进展[J]. 经济学动态, 2010, (3): 98- 102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张万里, 宣旸, 产业智能化对产业结构升级的空间溢出效应-劳动力结构和收入分配不平等的调节作用[J]. 经济管理, 2020, 42 (10): 77- 101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
张颖熙, 夏杰长, 健康预期寿命提高如何促进经济增长?——基于跨国宏观数据的实证研究[J]. 管理世界, 2020, 36 (10): 41- 53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
邹薇, 刘勇, 技能劳动、经济转型与收入不平等的动态研究[J]. 世界经济, 2010, 33 (6): 81- 98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Acemoglu D, Restrepo P, (2016). The Race between Machine and Man: Implications of Technology for Growth, Factor Shares and Employment[R]. Working Paper, Department of Economics, Massachusetts Institute of Technology.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Acemoglu D, Restrepo P, (2018). Demographics and Automation[R]. Working Paper, Department of Economics, Massachusetts Institute of Technology.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Acemoglu D, Restrepo P, (2019). The Wrong Kind of AI? Artificial Intelligence and the Future of Labor Demand[R]. Working Paper, Department of Economics, Massachusetts Institute of Technology.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Aghion P, Jones B F, Jones C I, (2017). Artificial Intelligence and Economic Growth[R]. Working Paper, College de France and London School of Economics and Political Science.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Cohen D, Leker L, (2014). Health and Education: Another Look with the Proper Data[R]. Working Paper, Department and Laboratory of Applied and Theoretical Economics, École normale Supérieure.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Dioikitopoulos E V, Turnovsky S J, Wendner R, (2017). Dynamic Status Effects, Savings, and Income Inequality[R]. Working Paper, King's Business School, Group of Economics, King's College London.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Marta P, David C, María G, (2018). Testing the Effect of Population? Ageing on National Saving Rates[R]. Working Paper, Department of Economics, University of Cantabria.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Robine J M, Romieu I, Michel J P, (2003). Trends in Health[M]//Robine J M, Jagger C, Mathers C D, Crimmins E M, Suzman R M. Determing Health Expectancy. Chichester: Wiley: 75-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
World Inequality Lab, (2018). World Inequality Report[R]. Paris: World Inequality Lab, Paris School of Economics.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |